Виды заземления и их назначения

Содержание

Системы заземления — что это и какие бывают?

Виды заземления и их назначения

Заземление — одна из основных мер защиты от поражения электрическим током. Сегодня это обязательный элемент электроснабжения любого объекта. Об этом сказано и в пункте 7.1.13 Правил устройства электроустановок:

«Питание электроприемников должно выполняться от сети 380/220 В с системой заземления TN-S или TN-C-S.При реконструкции жилых и общественных зданий, имеющих напряжение сети 220/127 В или 3 х 220 В, следует предусматривать перевод сети на напряжение 380/220 В с системой заземления TN-S или TN-C-S.»

Давайте разберемся подробнее с тем что такое «система заземления», какими они бывают и чем отличаются.

Что такое «система заземления» и что в неё входит?

Любая система состоит из нескольких элементов, а в ГОСТ 50571 дано такое определение:

Система заземления электрической сети (заземляющая система электрической сети; система заземления; заземляющая система): Совокупность заземляющего устройства подстанции, заземляющего устройства открытых проводящих частей потребителя и нейтрального (иногда фазного) проводника в электроустановке напряжением до 1 кВ.

То есть в систему заземления входит:

-заземляющие устройства;

-нейтральный проводник;

-открытые токопроводящие части потребителя.

Пример заземляющего устройства для частного дома

Но и здесь мы видим ряд определений, расшифруем и их:

-Заземляющим устройством называется совокупность заземлителя и заземляющих проводников, а заземлителем называют проводящую часть или совокупность таких частей, находящихся в электрическом контакте с землёй.

-Нейтралью в трёхпроводной системе электроснабжения называется средняя точка вторичной обмотки трансформатора/генератора образованная в результате соединения обмоток звездой.

-Открытыми токопроводящими частями называются доступные к прикосновению металлические части оборудования, которые в нормальном режиме работы не находятся под напряжением, но могут оказаться под напряжением в результате повреждения основной изоляции. Это может быть корпус водонагревателя, электроплиты, стиральной машины и любого другого оборудования.

-Само же слово «заземление» значит преднамеренное электрическое соединение какой-либо точки сети, электроустановки или оборудования с заземляющим устройством.

Комплект заземления

Виды систем заземления

С определениями вроде бы разобрались. Теперь же разберем о чем шла речь в приведенном вначале статьи пункте ПУЭ, но прежде чем начать перечислять виды систем, расшифруем буквы, которые используются в их обозначениях.

Итак, первая буква говорит о наличии соединения источника питания с землёй как такового:

T (от франц. terre) — заземлено;

I (от франц. isolé — изолированный) — изолировано от земли.

Вторая указывает о способе обеспечения защиты:

N — открытые токопроводящие части соединяются с глухозаземленной нейтралью трансформатора/генератора;

T — открытые проводящие части заземлены, независимо от того соединена или изолирована нейтраль источника питания.

Следующие буквы говорят о том совмещены ли защитные и рабочие функции в одном проводнике или же возложены на разные:

S (от англ. Separated — отделён) — защитный и рабочий проводники разделены на протяжении всей линии от источника питания до потребителя.

C (от англ. combined — совмещены) — функции рабочего и защитного проводника объединены в одном проводнике.

Цветовая маркировка проводников

Кроме перечисленного далее будут использованы и следующие буквы для обозначения проводников:

L — фазный проводник;

N (от англ. neutral) — рабочий нулевой (или нейтральный) проводник;

PE (от англ. protective earth) — защитный проводник, также его называют нулевой защитный проводник;

PEN (protective earth and neutral) — совмещенный проводник, который выполняет функции нулевого защитного и рабочего проводников.

В отечественных электросетях, которыми мы ежедневно пользуемся, используется глухозаземленная нейтраль. То есть на трансформаторной подстанции монтируется заземляющий контур, к нему крепится металлическая шина и к ней присоединяется нейтральный проводник.

Это называется «система TN» (п. 1.7.3. ПУЭ). Но это общее название, система TN подразделяется на 3 других системы.

Нейтраль на этом рисунке глухозаземлена и здесь изображена система TN-S

Правилами и ГОСТами регламентируются следующие виды систем заземления:

TN-C (terra neutral — combined) — это система с глухозаземленной нейтралью, в которой функции защитного и рабочего проводника совмещены в PEN проводнике на всём её протяжении.

К потребителю приходит 2 провода (фаза и ноль) при однофазном подключении и 4 провода при трёхфазном.

Использование совмещенного защитного и рабочего проводника предполагает обеспечение защиты от поражения электрическим током посредством зануления корпусов электрооборудования.

Условная схема системы TN-C

Защита от поражения электрическим током обеспечивается посредством срабатывания автоматического выключателя при протекании токов короткого замыкания. Но это теоретически.

Практически же, токи короткого замыкания не всегда приводят к срабатыванию автоматических выключателей, это связано с высоким сопротивлением цепи фаза-ноль, что является первой проблемой.

Вторая проблема связана с тем, что в случае отгорания нуля на вводе корпуса занулённых электроприборов окажутся под напряжением.

Обрыв нуля в TN-C, красной штриховой линией условно показано откуда появляется на корпусе электроприбора

Из-за приведенной выше опасности от этой системы заземления отказались и перешли к TN-C-S.

TN-C-S — это система с глухозаземленной нейтралью, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. У потребителя же совмещенный проводник разделяется на защитный (PE) и рабочий (N).

Условная схема системы TN-C-S

При этом на вводе у потребителя выполняется повторное заземление PEN-проводника и он разделяется на PE и N. После точки разделения PE и N проводники никогда и ни в какой части схемы не соединяются между собой. Здесь также защита обеспечивается тем, что должен отключиться автоматический выключатель в результате протекания тока КЗ.

Но в отличие от предыдущей системы, даже при обрыве нуля на вводе, на корпусах электроприборов не будет опасного потенциала, ведь у нас есть повторное заземления нуля на вводе.

То есть заземление в этом случае и выполняет те функции для которых оно предназначено — снижение напряжения прикосновения до безопасного значения.

И так как у нас уже есть контур заземления — обеспечиваются условия для корректного срабатывания УЗО и дифавтоматов в результате утечки тока через корпус, защитный проводник, заземлитель на землю.

В случае соприкосновения фазного проводника с корпусом электроприбора в системе TN-C-S и TN-S может сработать как автоматический выключатель так и УЗО.

TN-S — аналогично TN-C-S, только рабочий и защитный нулевые проводники разделены по всей длине.

Фактически для её реализации необходимо в трансформаторной подстанции к заземляющей шине подключить еще один провод (PE). По безопасности эта система похожа на TN-C-S.

Но её проблема в том, что для реализации нужна хоть и простая, но капитальная модернизация всей имеющейся электросети, а именно прокладка пятого провода по всем линиям электропередач, стоякам многоквартирных домов и так далее…

TT — система с глухозаземленной нейтралью, в которой открытые токопроводящие части электрооборудования не имеют электрического контакта с нейтралью трансформатора.

Они заземляются при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

В этом случае ноль на вводе выполняет только функции рабочего нуля, поэтому несправедливо его называть PEN-проводником.

Защитный проводник — здесь как нельзя правильнее назвать именно заземляющим (заземлением), поскольку он не связан с нулем. Защита обеспечивается только путем уменьшения напряжения прикосновения («стекания» фазы на землю).

То есть автоматический выключатель как в предыдущих системах может и не сработать. В связи с этим в системе TT обязательна установка устройств дифференциальной защиты (УЗО или дифавтоматов), согласно п. 1.7.59. ПУЭ.

Согласно тому же пункту использование такой системы допустимо лишь в том случае, если не удаётся обеспечить электробезопасность в системах TN, например, при плохом состоянии воздушных линий. Поэтому относительно часто используется в частном секторе, деревенских домах и на дачах.

IT — система с изолированной нейтралью. Здесь заземление электроустановок осуществляется как в ТТ, но нейтраль источника питания не соединяется с землёй. В быту не встречается, поэтому рассматривать её в пределах этой статьи не имеет смысла.

Иллюстрация для сравнения отличий схем электроснабжения при различных системах заземления

Заключение

Сегодня домовладельцы при капитальном ремонте дома и электропроводки, так или иначе, сталкиваются с вопросами заземления и выбора системы. Практически во всех случаях единственным возможным решением будет использовать TN-C-S или TT, поскольку в нашей стране просто нет TN-S как вида, может быть, конечно, где-то её и можно встретить, но зачастую нет.

Алексей Бартош специально для etm_company

Какие бывают системы заземления

Виды заземления и их назначения

Заземление – совокупность технических решений по соединению открытых металлических частей электрических устройств с землёй или специальным заземляющим контуром. На практике провод заземления выполняется в желто-зеленых тонах, один вывод которого имеет доступ к корпусу подключаемого оборудования.

Заземление бывает естественным, когда корпуса приборов соединяются непосредственно с трубами, стержнями и прочими расположенными в грунте металлическими предметами, и искусственное.

Первое при эксплуатации домашних и общественных электросетей запрещено нормативами ПУЭ.

Искусственное заземление осуществляется по специально выделенному сетевому проводу. Допускается не применять заземление при напряжении до 42 В переменного тока.

5 основных типов защитного заземления

В международной практике существует 5 основных типов защитного заземления электросетей:

1. TNC – Terre Neuter Combined (заземление с комбинированной нейтралью). Эта система все ещё встречается в старом жилфонде (отсутствует разделение идущего от генератора или трансформатора глухозаземлённой нейтрали PEN на заземляющий PE и рабочий ноль N). Используются двухжильные для однофазных и четырёхжильные для сетей с трёхфазным питанием.

В проектировании электросетей современных построек отказываются от применения TNC-системы, поскольку комбинированный ноль означает отсутствие полноценной защиты. При обрыве «нуля» на домашних устройствах может появиться электрический ток.

Правилами ПУЭ запрещают установку коммутационных устройств в разрывы РЕ- и PEN-проводников. Единственное преимущество TN-C – дешевизна и простота монтажа.

2. TN-S – Terre Neuter Separated (заземление с раздельной нейтралью). На всём протяжении от трансформатора пятижильный кабель идет с разделённой на рабочий «ноль» и «землю» нейтралью.

Остальные 3 провода – это фазы. Однофазная сеть проводится трёхжильным кабелем (фаза, нейтраль и «земля»). Очевидным недостатком являются высокие издержки и отсутствие унификации существующих электросетей.

Система TN-S — по надёжности самая передовая и безопасная конфигурация заземления, выполняющая функцию максимальной защиты электрооборудования и людей от поражения электричеством благодаря применению УЗО, дифавтоматов, автоматических выключателей и СУП.

  Какой бывает галька для ландшафтного дизайна

Высокая степень безопасности в TN-S достигается полным размыканию цепи (нейтрали и фаз) при срабатывании, в то время как «земля» PE продолжает выполнять свои функции. Также она отличается отсутствием помех на линиях питания.

3. TN-C-S — Terra Neutrum Combined Separated (заземление с комбинированно-раздельной нейтралью) – провод заземления и рабочий ноль объединены до ввода в здание, где далее идет расщепление на проводники N и РЕ.

После разделения такая схема внутри дома фактически превращается в TN-S, монтируется по аналогичным принципам и обладает теми же достоинствами с той лишь разницей, что при обрыве PEN-проводника напряжение может оказаться на корпусах. По этой причине возникает необходимость дополнительной защиты PEN-проводника.

4. TT – Terra Terra (автономный контур заземления) — к данной конфигурации прибегают в случаях, когда применение систем TN-C, TN-S и TNCS не способно обеспечить надлежащую безопасность электросетей.

Такие ситуации возникают из-за аварийного состояния линии электропередач в удалённых населённых пунктах, во временных строениях и торговых металлических контейнерах.

Главный принцип этой системы заключается в отсутствии связи и в разделении защитного РЕ-проводника и рабочего ноля N, подключённого к заземлителю питающего трансформатора. Внутри строения создается шина для подключения корпусов электроприборов к внешнему заземлителю. Систему ТТ рекомендуется использовать с устройством УЗО.

Главное преимущество данного типа заземления заключается в полной независимости от аварии или обрыва защитного провода в линии питания, что гарантирует высокий уровень защиты. Главный минус же связан с высокими требованиями к автономному контуру заземления и характеристикам УЗО.

5. IT – Isolated Terra (изолированное заземление) — нейтраль от питающего трансформатора изолирована от земли или связана с ней через большое сопротивление.

Также предполагается обязательное наличие автономного контура заземления, с которым соединяются токопроводящие корпуса электроприборов. Величина тока утечки при однофазном замыкании на землю при таком соединении ничтожно и не представляет угрозы даже в аварийном режиме. Для повышения надежности также рекомендуется использование УЗО.

  Системы заземления TN-C, TN-S, TN-C-S

Данная схема системы заземления считается наиболее электробезопасной и применяется в лабораториях и медицинских учреждениях, в шахтах и горнодобывающих предприятиях, где используется чувствительная аппаратура. Реализация схемы IT в домашних электросетях и крупных предприятиях затруднительно, так как расширение сети увеличивают ток фазного замыкания и снижает безопасность.

Еще статьи

Виды заземлений – какие бывают? Системы и назначение конструкции

Виды заземления и их назначения

Заземление – это намеренное соединение определенной части оборудования или электрической цепи с грунтом. Чаще всего, для заземления используется один или несколько штырей из металла необходимой длины и диаметра, забитых в грунт и соединенных вместе.

Конструкцию соединяют с кабелем, подключенному к заземляемому устройству. Штыри и провод, металлическая полоса, связывающая их, место установки заземления, оговорено по правилам монтажа электрических установок.

Электроустановки подразделяются:

  1. С напряжением более 1 кВ с эффективно или глухо заземленной нейтралью.
  2. С напряжением более 1 кВ с заземленной через резистор или изолированной нейтралью.
  3. С напряжением менее 1 кВ с глухо заземленной нейтралью.
  4. С напряжением менее 1 кВ с изолированной нейтралью.

С учетом технических особенностей электросетей и электрической установки, для ее работы может быть необходима какая-либо токоотводящая конструкция. Обычно, до проектирования электрического устройства, определяют перечень требования, в которых указывают необходимую конструкцию.

Сейчас в мире используют единую систематизацию подобных устройств, в которую входят три системы:

  1. Система IT.
  2. Система TT.
  3. Система TN.

Эта аббревиатура расшифровывается так:

  • Символ I — изолированный.
  • Символ N — подключено к нейтрали.
  • Символ T — заземление.

Системы TN

Такие конструкции отличаются наличием глухо заземленной нейтрали и подсоединением к ней всех способных проводить электроэнергию элементов сети.

Подключение к нейтрали производят используя нулевые проводники.

Электрошкафы, щиты и корпуса приборов, подключают к проводнику PEN. Выполняется это для создания короткого замыкания, при пробивании проводки на корпус, в результате чего, защитные автоматы обесточивают сеть, идущую на вышедший из строя участок сети, таким образом, предупреждая поражение током людей, находящихся поблизости.

Система с нулевым и расчлененным рабочим проводником

Система TN-S

Система TN-S для безопасности оборудована двумя, а не одним нулевым проводом, один из них служит как защитный провод, а второй используется в качестве нейтрального проводника, подключенного к глухо заземленной нейтрали. Эта конструкция сегодня является самой безопасной, способной эффективно защитить от удара электричеством.

Принцип работы этой конструкции состоит в том, что используют всего одну фазу для подачи рабочего напряжения и ноль.

Разводку производят проводом из трех жил, одна из которых служит как нуль и подключается к вводному проводу.

Система c проводом PEN и двумя нулями

Система TN и TN-C-S

Здесь характерно использование в определенном месте оборудования, соединенного с нулевым проводом, расщепляющимся на два проводника: PE и N, для последующего заземления оборудования.

Для бесперебойной работы, система TN-C-S после места раздвоения, оборудуется еще одним заземлителем.

Положительные свойства этой системы:

  1. Простой переход на нее во время ремонта старых домов.
  2. Простая конструкция защиты от молнии.
  3. Возможность создания защиты проводки простыми автоматами от замыкания.

Минусы этой системы:

  1. Риск перегорания нулевого провода вне здания, что грозит пробоем корпусов из металла электротоком.
  2. Нужда в использовании оборудования для уравнивания потенциалов.
  3. Сложность в создании действенной защиты внегородской черты.

Для частных, хозяйственных строений, ПУЭ советуют использовать совершенно другую систему — TT.

Независимые заземлители

Система TT

В конструкции системы TT есть два заземлителя:

  1. Для источника электротока.
  2. Для незащищенных металлических элементов системы.

Положительным свойством этой конструкции является повышенная работоспособность нулевого провода на промежутке от оборудования до места подачи напряжения и независимость PE провода.

Сложность может появиться только с использованием собственного заземлителя, так как непросто подобрать для него подходящий диаметр. Но такой минус компенсируется с помощью системы защитного отключения.

Система с изолированным нейтральным проводом

Система IT

В большинстве случаев, в такой конструкции, нейтраль изолируют от земли, или создают необходимое зануление IT, используя устройство со значительным сопротивлением.

В домашних условиях, устройства такого типа не нашли применения, они практически не используются, но позволяют их применять для питания специальных устройств, для которых необходима безопасность и максимальная стабильность при работе, к примеру, в лабораториях и лечебных учреждениях.

Технологии заземляющих устройств

Есть несколько способов изготовления контура заземления.

Чаще всего, используют две из них:

  1. Модульно-штыревое заземление.
  2. Традиционное заземление.

Конструкция модульного заземления

Для ее устройства используют стержни, из покрытого медью качественного металла. Их вертикально забивают в грунт на глубину около 1 м, диаметр стержней 14 мм. По краям стержня нарезают по 30 мм резьбы и так же покрывают ее медью.

Металлические части конструкции соединяют вместе латунными муфтами. По горизонтали их соединяют стальными полосами с латунными зажимами или используют для этого комплект медного провода. Также, устраивают соединение контура заземления и щитка-распределителя. Для защиты элементов заземления от коррозии, в комплект входит защитная паста.

Традиционное заземление

Изготавливают такую систему из черного металла: полос, труб, уголка. На 3 м в грунт, с промежутком 5 м вбивают треугольником три металлических электрода. Далее, электроды соединяют в общий контур, используя металлическую полосу и электросварку.

Такое заземление имеет несколько отрицательных свойств (к примеру, трудоемкость создания контура и коррозия, разрушающая металл изделия), по этой причине, в наше время вместо нее стараются использовать более совершенный способ заземления.

Естественные заземляющие элементы

Чаще всего, их используют для заземления электрического оборудования. В качестве естественных заземлителей применяют металлические элементы различных ЖБ конструкций, к примеру, фундаменты подстанций и линий электропередач и фундаменты строений.

Дополнительно, для естественного заземления подключают части подземных коммуникаций, изготовленных из металла, к примеру, подходит броня кабелей и всевозможные трубопроводы, иногда допустимо подключать и наземные коммуникации, к примеру, подойдут для этой цели рельсовые пути.

Какие ЖБ изделия нельзя применять для заземления?

Не стоит подключать заземляющий провод к фундаментам, собранным из отдельных ЖБ элементов. Желательно связать прутья арматуры блоков, и только тогда допустимо подключать заземлитель. Иначе, лучше использовать искусственный заземлитель.

Для этого используют металлический проводник, вбитый вертикально или горизонтально в грунт. Иногда используют несколько таких проводников, связав их вместе. Важно, чтобы отдельные электроды контура, были вбиты на необходимую глубину.

Горизонтальный заземлитель желательно уложить на глубину 50 см, если грунт на участке легкий, то укладку электрода желательно производить на глубине 1 м. Важно то, что у горизонтальных проводников, сопротивление больше чем у вертикальных.

По этой причине, лучше использовать вертикальный заземлитель.

Толщина искусственных заземлителей:

  1. Металлический прут — сечение 10 мм;
  2. Оцинкованный металлический прут — сечение 6 мм;
  3. Металлический уголок — толщина 4 мм, полка 75 мм;
  4. Металлическая полоса — 4 мм;
  5. Брак или БУ трубы — 3,5 мм толщина стенки;
  6. Общее сечение проводников забиваемых в землю — 160 мм.

Заземление нейтрального проводника

В нашей стране, сети 6-35 кВ эксплуатируются с не глухо заземленной нейтралью. Использование таких сетей хорошо тем, что у них низкое значение токов замыкания на грунт, но при ОЗЗ, изготовленных из металла, в таких сетях повышается напряжение на целых фазах относительно земли до уровня линейного, что плохо в этом случае.

Коэффициент замыкания на грунт — отношение разницы потенциалов между землей и фазой при замыкании остальных фаз на землю к разнице между землей и фазой в сети.

Системы заземления

Виды заземления и их назначения

Заземление является одним из основных факторов обеспечивающих защиту от поражения электрическим током. В соответствии с главой 1.7 ПУЭ все системы заземления электроустановок можно разделить на две группы:

Первая буква аббревиатуры  указывает на характер заземления источника питания, а вторая — на характер заземления открытых проводящих частей электроприемника:

  • T (от франц. terre — земля) — заземлено;
  • N (от франц. neutre — нейтраль) — соединение с нейтралью источника питания (зануление);
  • I (от франц. isolé — изолированный) — изолировано от заземления.

Так же в статье встречаются следующие аббревиатуры:

  • N — функциональный (рабочий) ноль — нулевой проводник используемый для подключения электроприемника.
  • PE — защитный ноль — защитный проводник предназначенный для заземления корпусов электрооборудования.
  • PEN — проводник совмещающий функции нулевого защитного и нулевого рабочего проводников.

Теперь подробно разберем перечисленные типы систем заземления.

2. Система заземления TN

Система TN — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника питания посредством нулевых защитных проводников (п.1.7.3. ПУЭ).

Как уже было написано выше система TN подразделяется на следующие системы (подсистемы): TN-C,  TN-C-S, TN-S.

2.1 Система заземления TN-C

Система TN-C — это система TN, в которой нулевой защитный и нулевой рабочий проводники совмещены в одном проводнике на всем ее протяжении. То есть при данной системе применяется общий PEN-проводник который используется как для подключения электроприемников так и для зануления их открытых проводящих частей (корпусов).

Система заземления TN-C схема:

Как видно на схеме при данной системе выполняется зануление токопроводящих корпусов электрооборудования, это необходимо для того, что бы при замыкании фазного провода на корпус электроприемника, вследствие его обрыва или повреждения изоляции, произошло короткое замыкание которое, в свою очередь, привело бы к срабатыванию защитной аппаратуры (автоматического выключателя) и отключению напряжения.

Главным недостатком системы TN-C является утеря ее защитных функций в случае отгорания (обрыва) PEN-проводника, при этом на зануленном корпусе электрооборудования может возникнуть опасный для жизни электрический потенциал.

Из-за недостаточной степени защиты в настоящее время данная система не применяется, однако она все еще встречается в зданиях старой постройки. При реконструкции старых зданий система заземления TN-C заменяется на систему TN-C-S или TN-S.

2.2 Система заземления TN-C-S

Система TN-C-S — это система TN, в которой функции нулевого защитного и нулевого рабочего проводников совмещены в одном проводнике в какой-то ее части, начиная от источника питания. Другими словами при данной системе имеется PEN-проводник который, в определенной части этой системы, разделяется на нулевой рабочий (N-проводник) и нулевой защитный (PE-проводник).

Согласно пункту 1.7.135 ПУЭ В месте разделения PEN-проводника на нулевой защитный (PE) и нулевой рабочий (N) проводники необходимо предусмотреть отдельные зажимы или шины для проводников, соединенные между собой. PEN-проводник питающей линии должен быть подключен к зажиму или шине нулевого защитного РЕ-проводника.

Таким образом схема системы заземления TN-C-S будет иметь следующий вид:

Примечание: перемычка между шинами должна иметь сечение не менее сечения PEN-проводника.

Данная система более надежна и обеспечивает более высоки уровень электробезопасности чем система TN-C, кроме того система TN-C-S обеспечивает защиту от обрыва нуля, а ее устройство обходится немногим дороже системы системы TN-C.

Однако эта система так же имеет существенный недостаток — при повреждении PEN проводника на участке сети между источником питания и зданием на всех корпусах электрооборудования соединенных с PE проводником появится опасный для жизни электрический потенциал.

Для предотвращения такого развития событий при системе TN-C-S выполняется повторное заземление PEN проводника, как показано на схеме.

Благодаря невысокой стоимости устройства системы TN-C-S и ее хорошими защитными характеристиками в настоящее время эта система получила наиболее широкое применение.

Подробную инструкцию по устройству заземления в частном доме по системе TN-C-S вы можете посмотреть здесь.

2.3 Система заземления TN-S

Система TN-S — это система TN, в которой нулевой защитный и нулевой рабочий проводники разделены на всем ее протяжении.

Система заземления TN-S схема:

Данная система обеспечивает высокий уровень безопасности, т.к. при ней исключена возможность возникновения опасного электрического потенциала на корпусах электрооборудования при повреждении питающей линии.

Однако система TN-S не получила широкого распространения ввиду своего главного недостатка — высокой стоимости, которая обусловлена необходимостью выполнения подключения электроустановок потребителей к источнику питания пятью проводами при трехфазном подключении либо тремя проводами при однофазном подключении, при этом отечественная энергетика ориентирована на четырехпроводные схемы трехфазного электроснабжения, это значит, что при решении выполнить подключение по системе TN-S присоединение к существующим сетям электроснабжения будет невозможно, для такого подключения необходимо будет вести отдельную пятипроводную линию от источника питания (трансформаторной подстанции).

3. Система заземления TT

Система ТТ — это система, в которой нейтраль источника питания глухо заземлена, а открытые проводящие части электроустановки заземлены при помощи заземляющего устройства, электрически независимого от глухозаземленной нейтрали источника.

Система заземления TT схема:

В соответствии с пунктом 1.7.59.

ПУЭ питание электроустановок по системе ТТ, допускается только в тех случаях, когда условия электробезопасности в системе TNне могут быть обеспечены.

Кроме того в таких электроустановках должно быть выполнено автоматическое отключение питания с обязательным применением УЗО. При этом должно быть соблюдено условие:

Rа Iа ≤ 50 В,

где — ток срабатывания защитного устройства; Ra — суммарное сопротивление заземлителя и заземляющего проводника, при применении УЗО для защиты нескольких электроприемников — заземляющего проводника наиболее удаленного электроприемника.

4. Система заземления IT

Система IT — система, в которой нейтраль источника питания изолирована от земли или заземлена через приборы или устройства, имеющие большое сопротивление, а открытые проводящие части электроустановки заземлены.

Система заземления IT схема:

Система IT применяется, как правило, в электроустановках специального назначения, к которым предъявляются повышенные требования безопасности, например лаборатории, угольные шахты, также может применяться в больницах для аварийного электроснабжения и освещения и т.п

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы

Системы заземления TN-S, TN-C, TNC-S, TT, IT

Виды заземления и их назначения

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление.

Основные требования к системам заземления содержатся в пункте 1.7 Правил устройства электроустановок (ПУЭ).

В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия.

Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается.

В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель.

Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство.

Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Виды систем искусственного заземления

Основным документом, регламентирующим использование различных систем заземления в России, является ПУЭ (пункт 1.

7), разработанный в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК).

Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» – комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя.

Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S.

Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора.

При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.

2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией.

Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется.

На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников.

Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом.

Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток..

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода.

При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют.

Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века.

При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость.

Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C.

Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали.

Который при входе в здание разветвляется на «PE» – ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN.

Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N».

На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

Совсем недавно разрешенная к использованию на территории РФ, данная система быстро распространилась в российской глубинке для энергоснабжения частных домовладений.

В городской местности TT часто используется при электрификации точек временной торговли и оказания услуг.

При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

2. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков.

Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT.

Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т».

Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю.

Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование.

При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное – жизнь человека.

Смотрите также:

  • Вебинары с ведущими экспертами отрасли
  • Все для расчетов заземления и молниезащиты
  • Полезные материалы: статьи, рекомендации, примеры
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.