Проверка сопротивления изоляции электросети и заземления оборудования

Содержание

Проверка изоляции заземления – как самостоятельно сделать проверку сопротивления изоляции электросети и заземления оборудования

Проверка сопротивления изоляции электросети и заземления оборудования

Как проверить изоляцию заземления?

В электрических приборах необходимо заземление, чтобы снизить уровень напряжения до безопасного для окружающей среды.

Роль заземления и изоляции электросети

Заземление – это соединение электрических приборов с грунтовой массой для защиты от удара током. Если прибор не работает должным образом, то заземление может спасти человека. Самый простой заземлитель представляет собой металлический стержень, но в некоторых случаях это могут быть сложные элементы различной конфигурации.

При проверке качества заземления делаются измерения сопротивления на контуре заземления. Если такие проверки оборудования проводить регулярно и контролировать состояние заземлителя, то можно увидеть, надежно ли изолировано оборудование от перепадов напряжения.

Что представляет собой цепочка заземления

Цепочка заземления состоит из нескольких связующих элементов:

  • непосредственно проводник
  • фиксатор, соединяющий электрод и проводник
  • электрод, помещенный в землю

Низкий уровень сопротивления такой цепи позволяет току стекать в землю, а мгновенное реагирование защитных реле помогает моментально создать изоляцию оборудования (и людей) от высокого напряжения.

Заземление и изоляция – это комплекс мер, направленных на защиту человека и техники как дома, так и на рабочем месте. Важно регулярно проверять сопротивление изоляции, чтобы убеждаться в обеспечении защиты на высоком уровне. Чтобы этот уровень был гарантирован, все значения элементов цепи заземления должны стремиться к нулю, но такие показатели сопротивления редко встречаются при проверке.

Почему уровень заземления не может быть равен нулю

С практической стороны сопротивление элемента заземления (металлического стержня) включает несколько составляющих:

  • сопротивление металлической оболочки электрода и сопротивление в месте соединения проводника со стержнем заземления
  • сопротивление в месте стыковки стержня с землей
  • сопротивление поверхности земли попадающему в нее току – это называется сопротивление земли

Сопротивление земли является важнейшей частью заземления. Самый близкий к электроду слой грунта имеет самую маленькую поверхность и самое большое сопротивление. Если слои земли удалены от стержня, то сопротивление уменьшается.

Проверка состояния заземления и изоляции самостоятельно

Выполнить проверку изоляции электросети можно самостоятельно. Электророзетки современной бытовой техники оборудованы заземляющими элементами, что означает возможность их использования только в электрической сети, подключенной к заземляющему элементу – контуру. Показателем правильной работы контура является уровень его сопротивления.

Ток течет по цепочке с самым меньшим сопротивлением, поэтому если сопротивление контура маленькое, то будет обеспечен высокий уровень защиты. Значения сопротивления прописаны в правилах устройства электроустановок, для стандартной сети в 220 Вольт значение не превышает 4 Ом.

Чтобы замерить показатель, используется специальное оборудование – бытовым мультиметром здесь не обойтись. Сейчас существуют современные электроприборы, позволяющие сделать это быстро. Проверка значения сопротивления происходит поэтапно:

  • шина должна быть очищена, чтобы обеспечить должный контакт
  • в грунт вставляется пара стержней на глубину от полуметра до метра
  • при помощи фиксаторов проводки оборудование крепится к шине и стержням
  • проводится измерение по инструкции

Чтобы получить достоверные результаты измерения, забейте стержни вдали от подземных коммуникаций.

Проверка заземления в обычной розетке

Наличие заземляющего контакта на электророзетке еще не говорит о заземлении. Можно применить несколько способов проверки изоляции и заземления. Чтобы проверить заземление и изоляцию, понадобится мультиметр с отверткой, а также индикатор напряжения.

Фазу розетки можно определить тестером. После этого проверьте контакт индикатором: если он загорелся – розетка неисправна или неверно подключена.

Затем нужно отключить автоматы и снять электророзетку, а перед этим удостовериться, что к розетке подсоединены три провода. При выполнении такой последовательности действий розетку возвращают на место, затем подключают автоматы и продолжают проверку мультиметром. Порядок проверки мультиметром:

  • сначала проверяется напряжение между нулем и фазой. Если напряжения нет, то порван нулевой провод
  • далее – между грунтом и фазой. В этой ситуации напряжения может не быть при отсутствии заземления
  • и напоследок – между грунтом и нулем. Отсутствие напряжения в этой комбинации говорит о занулении

Если вам ранее не приходилось самостоятельно проверять изоляцию заземления, ознакомьтесь с подробными инструкциями и проконсультируйтесь со специалистами.

Оставьте заявку сейчас!

И получите лучшие предложения от проверенных мастеров и бригад.

  1. Сравните цены и выберите лучшие условия
  2. Отклики только от заинтересованных специалистов
  3. Не теряете время на общение с посредниками

Оставить заявку Более 10 000 исполнителей
ждут ваших заказов!

Сопротивление изоляции: методы измерения и нормы

Проверка сопротивления изоляции электросети и заземления оборудования

Сопротивление изоляции – важнейший показатель, характеризующий работоспособность электрооборудования и его безопасность для обслуживающего персонала.

В большей степени этот параметр касается кабельных линий и соединительных проводов, которые при эксплуатации подвергаются различного рода воздействиям.

Методика замеров сопротивления изоляции основывается на законе Ома для электрической цепи.

Согласно этому закону искомый показатель представляется как результат деления напряжения, приложенного к изоляционному покрытию, на величину тока, протекающего через него (Rиз = U/I).

Диагностика электропроводки и силовых кабелей – обязательная составляющая профилактических мероприятий, позволяющих поддерживать их работоспособность на должном уровне.

Проверка сопротивления изоляции электротехнических объектов проводится с учетом требований действующих нормативов (ПУЭ, в частности).

Типовые причины неисправности изоляционного покрытия

Несмотря на то, что оболочка современных электрических кабелей изготавливается из качественного и прочного материала – она, тем не менее, иногда теряет свои защитные свойства. Последнее обычно объясняется следующими причинами:

  • разрушительное воздействие высокого напряжения и солнечного света;
  • механические повреждения (деформации);
  • нарушения температурного режима;
  • климатические особенности окружающей местности (жара или сильные морозы, например).

Нарушение целостности изоляции кабеля вследствие механического повреждения

Для выяснения степени повреждения и допустимости дальнейшей эксплуатации проводов и кабелей организуются измерения сопротивления изоляции кабельных трасс.

Важно! При обнаружении явного повреждения оболочки кабеля организация и проведение испытаний теряет всякий смысл

В этом случае зона разрушений нуждается либо в ремонте (если это допустимо), либо в полной замене участка кабельной трассы или ответвления проводки.

Своевременно проведенное испытание изоляции на прочность позволяет предотвратить целый ряд неприятных последствий, включая КЗ в электросети, поражение людей высоким напряжением и возникновение пожара.

Нормы сопротивления изоляции для электрических цепей и установок

Нормативные показатели по допустимому сопротивлению изоляции у электроустановок вводятся отдельно для каждого электротехнического объекта отдельно. Требования к этому показателю существенно отличаются для таких типов оборудования, как:

  1. Силовой или сигнальный кабели, прокладываемые в различных условиях эксплуатации.
  2. Действующие промышленные электроустановки с рабочей проводкой.
  3. Бытовые приборы, имеющие внутреннюю разводку и оснащенные сетевым шнуром.

Основной показатель, из величины которого исходят при нормировании допустимого сопротивления изоляции – действующее в контролируемой цепи напряжение. Причем учитывается не только его абсолютное значение, но и тип питания (однофазное или трехфазное). Ниже приводится перечень некоторых электротехнических устройств и цепей с указанием соответствующего им нормы сопротивления изоляции:

  • кабельные проводки, расположенные на местностях и объектах без отклонений климатических условий от нормальных – 0,5 МОм;
  • стационарные электрические плиты –1 МОм;
  • щитовые с расположенными в них электропроводками и кабелями –1 МОм;
  • электротехнические приемники, работающие от напряжений до 50 Вольт – 0,3 МОм;
  • электромоторы и агрегаты с питающим напряжением 100-380 Вольт – не менее 0,5 МОм.

И, наконец, согласно ПУЭ для любых устройств, включаемых в электрические линии с действующим напряжением до 1 кВ, этот показатель не может быть менее 1 МОм. Определить, какое должно быть сопротивление защитной оболочки эксплуатируемого оборудования поможет изучение сопроводительной документации на конкретный образец.

Допустимые значения сопротивления изоляции

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную).

Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль.

Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Обратите внимание: Импульсные посылки амплитудой порядка 1-2 кВ генерируются самим же мегаомметром.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в «динамо-машине»). Специалисты нередко называют их «стрелочными», что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи).

Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей.

Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.

Цифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева).

Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность.

Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением «1800 in».

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый «продвинутый» мультиметр, ни любой другой подобный ему образец. С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).

Цифровой измеритель Fluke 1507

Важно! Для замеров берутся только предварительно поверенные приборы, обязательно имеющие лицензию производителя.

Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.

Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.

Используемые методы испытаний

Еще до того, как проверить состояние изоляции – важно определиться с объектом, на котором требуется оценить ее качество. Это могут быть:

  1. Электрическая проводка.
  2. Силовые кабели высокого напряжения.
  3. Низковольтные линии электропередач.
  4. Контрольные провода.

Для каждой из этих электротехнических категорий выбираются индивидуальные методики измерения сопротивления изоляции. Рассмотрим все перечисленные варианты более подробно.

Электропроводка

Перед началом измерительных процедур электропроводка и распределительные коробки осматриваются на предмет отсутствия разрывов и явных разрушений. После этого обследуются места подсоединения проводов к типовым розеткам и выключателям.

Важно! Начинать замеры сопротивлений изоляции допускается лишь после того, как проводка полностью обесточена, а все потребители на объекте отключены от нее.

Измерение сопротивления изоляции электропроводки с помощью цифрового прибора Fluke-1507

В однофазной сети для определения искомого параметра потребуется провести следующие операции:

  1. Сначала щупы мегаомметра подключаются между фазной и нулевой жилами проводки.
  2. Затем определяется сопротивление изоляции между фазной и центральной жилой защитного заземления.
  3. Количество проведенных измерений соответствует комплекту проводов в линии.

Если при снятии показаний мегаомметр показывает сопротивление менее 0,5 Мом – электрическую линию придется разбить на более короткие отрезки. По результатам последующих обследований каждого из них находится участок с неудовлетворительным качеством изоляции. Его в последствии нужно будет полностью заменить.

Высоковольтные силовые кабели (подготовка)

Перед измерением изоляции силового кабеля последний проверяется на отсутствие на нем опасных напряжений. Кроме того, для подготовки измерительной схемы потребуется проделать следующие операции:

  1. Прежде всего, с токоведущих жил посредством переносного заземления нужно снять остаточный заряд.
  2. Затем кабель полностью очищается от пыли и грязи, мешающих измерительному процессу.
  3. После этого потребуется ознакомиться с паспортными данными кабеля (там указывается искомый параметр, полученный по результатам заводских испытаний).
  4. Последняя операция необходима для того, что заранее определиться с рабочим пределом, выставляемом на приборе.

Подготовка кабельной линии к проведению измерений сопротивления изоляции

Важно! Перед измерением сопротивления изоляции кабеля обязательно проведение контрольной проверки мегаомметра на исправность.

Эта операция состоит в контроле показаний по шкале прибора при замкнутых и разомкнутых измерительных концах. В первом случае стрелка смещается ближе к «нулю», а во втором – показывать «бесконечность».

Силовые кабели (измерения)

Измерение сопротивления изоляции мегаомметром начинается с контрольной проверки каждой из фаз по отношению к заземленной стальной оболочке. И лишь после этого проверяется сопротивление между отдельными жилами (фото слева). В процессе снятия показаний недопустимо чтобы измерительные концы соприкасались между собой, а также контачили с заземляющими конструкциями и стальной оболочкой.

а) измеряется сопротивление изоляции между фазой и заземленной оболочкой кабеля, б) замер сопротивления между фазами кабельной линии, соответственно «А»-«В», «В»-«С» и «А»-«С».

Если обнаружится, что сопротивление изоляции ниже допустимого уровня – в соответствие с требованиями ПУЭ проводится дополнительные замеры.

Они предполагают проведение измерений изоляции всех фаз по отношению к земле и оценку величины проводимости между фазными проводниками.

Обратите внимание: Для повышения точности снятия показаний, указывающих на величину сопротивления изоляции проводов, делается несколько замеров.

Их общее число варьируется: для 3-х жильного кабеля в пределах 3-6 измерений, а для пятижильного может потребоваться 4, 8 или даже 10 подходов.

Измерение сопротивления изоляции силового кабеля в частном доме

Поскольку для трехфазных цепей существует несколько схем измерений – по тому же паспорту следует ознакомиться с предлагаемым производителем вариантом.

До момента индикации точных показаний на шкале мегаомметра согласно ГОСТ 3345 должно пройти не менее 60 секунд, но не более 5 минут (с момента подключения концов и подачи высокого напряжения).

Если за это время из-за высокой влажности, например, определить показания не удалось (стрелка не отклонилась на расчетное значение) – операцию придется провести еще раз.

Периодичность проведения электрических измерений в лаборатории в Москве

Проверка сопротивления изоляции электросети и заземления оборудования

Самый главный вопрос у большинства потребителей электрической энергии, – с какой периодичностью выполнять эксплуатационные испытания для электрооборудования? От правильного ответа на этот вопрос зависит планирование бюджета в долгосрочной перспективе.

Затраты на проверку величины изоляции, переходного сопротивления и другие виды измерений являются прямыми инвестициями в безопасность персонала и надежность работы оборудования.

С одной стороны, есть риск развития аварийной ситуации или получения штрафа от контролирующей организации за слишком длинный период между эксплуатационными испытаниями. С другой стороны, частые измерения являются причиной переплат, что неизбежно ведет к нерациональному расходованию финансовых средств.

В этой статье приведены выдержки из большинства отраслевых нормативных документов относительно сроков проведения электрических измерений. Они помогут определить правильную периодичность между измерениями и испытаниями для многих сфер.

Стоимость работ

НаименованиеЕд. изм.Цена с учетом НДС, руб.
Работы по испытанию электрооборудования
Общие электроизмерительные работы в помещениях ТП, РП, ВРУ3 522
Проверка соответствия смонтированной электроустановки и технологии выполнения электромонтажных работ проекту и нормативной докмуентации ВРУ, РУ, ТП, РП, ГРЩосмотр2 346
Проверка наличия цепи между заземлителями и заземляемыми элементамиточка196
Измерения сопротивления изоляции проводов, кабелей до 1 кВизмер.294
Проверка надёжности срабатывания аппаратов защиты при системе заземления TN и непрерывности защитного проводника PE (проверка цепи фаза-нуль в электроустановках до 1 кВ)шт196
Проверка автоматических выключателей напряжением до 1 кВ. Выключатель с электромагнитым тепловым или комбинированным расцепителемшт196
Измерение сопротивления изоляции, проверка электрической прочности измерительных трансформаторов тока до 1000 Вшт294

Сделаем расчет по вашим размерам за 5 минут!

Как все устроено?

В идеальном случае каждая организация составляет график планово-предупредительного ремонта (ППР) всего своего электрооборудования. Для выполнения этого вида работ на каждом предприятии, где есть электрооборудование, назначают лицо ответственное за электрохозяйство.

В график ППР электрооборудования вносят все эксплуатационные (межремонтные, периодические, профилактические) электрические измерения и испытания.

Периодичность подобных работ для каждой электроустановки определяет технический руководитель с учетом требований правил технической эксплуатации электроустановок потребителей (ПТЭЭП) и другой нормативно-технической документации.

Измерение сопротивления изоляции в соответствии с ПТЭЭП

При тщательном изучении таблицы 37 приложения 3.1. к ПТЭЭП можно найти ответы на большинство вопросов относительно периодичности измерения параметров электрической изоляции. В соответствии с этим нормативным документом измерение характеристик электрической прочности изоляции проводят:

  1. 1. В наружных установках и помещениях с особой опасностью – один раз в год.
  2. 2. Во всех других случаях один раз в три года.

Правила устройства электроустановок (ПУЭ) описывают особо опасное помещение, как помещение со следующими факторами:

  • высокая температура на протяжении длительного периода времени;
  • наличие в окружающем воздухе повышенного содержания токопроводящей пыли;
  • возможность одновременного прикосновения человека к заземленным частям и корпусу электрооборудования;
  • повышенный уровень влажности;
  • полы, которые изготовлены из токопроводящих материалов;
  • наличие в окружающей среде химически или органически активных веществ;
  • сочетание двух и более опасных факторов;
  • территория ОРУ относится к помещениям с особой опасностью.

На практике для большинства электроустановок периодичность проверки сопротивления изоляции по ПТЭЭП составляет один раз в три года. Исключение можно сделать для следующих объектов:тепловые пункты индивидуального типа (ИТП), промышленные здания и сооружения, помещения для распределительных устройств, автомобильные стоянки и др.

Как это выглядит в реальной жизни?

В реальности большинство компаний не назначают лицо ответственное за электрохозяйство. При этом график ППР либо отсутствует, либо не выделен отдельным документом из общего документооборота. Для подобных случаев, руководителям компании будет полезно ознакомиться с содержанием нашей статьи. На основании ПТЭЭП п. 3.6.

2, технический руководитель в соответствии с приложением №3 этих же правил определяет конкретные сроки для измерений и испытаний характеристик электрического оборудования во время технического обслуживания.

Указанная в ПТЭЭП периодичность является рекомендацией, поэтому может изменяться соответствующим решением технического руководителя.

ПТЭЭП содержат максимально допустимый интервал между профилактическими работами различного типа. При этом чаще производить электроизмерения разрешено, реже – нет. Для наглядности приведем выдержку из ПТЭЭП таблица 28 приложение 3:

Нормы испытаний которых не определены в разделах 2–27

В этой таблице представлены разновидности испытаний и измерений для электроустановок с номинальным рабочим напряжением до 1 кВ. В колонке №2 «Вид испытания» фигурируют следующие обозначения:

«К» – капитальный ремонт;

«Т» – текущий ремонт;

«М» межремонтный испытания.

Понятия капитального и текущего ремонта достаточно знакомы для технических специалистов. Но, межремонтные виды работ у многих вызывают недоумение. К подобным работам относят широкий перечень операций:

  • проверка УЗО;
  • измерение сопротивления петли фаза-нуль;
  • проверка переходного сопротивления между установками, которые подлежат заземлению и элементами заземляющего устройства;
  • проверка работы защитных устройств в системе с заземленной нейтралью;
  • измерение сопротивления изоляции электрооборудования.

Исходя из ПТЭЭП проверка работы УЗО выполняется не реже, чем раз в квартал. Периодичность проверки величины сопротивления изоляции приведена в таблице 37 приложения 3.1. к ПТЭЭП. Для двух последних видов измерений интервалы межремонтных периодов не указаны вовсе.

В реальной жизни период для проведения всех типов измерений определяют с учетом периодичности измерения сопротивления изоляции по нескольким причинам:

  1. Этот тип измерений определен для всех типов электроустановок и имеет фиксированные сроки.
  2. Определение сопротивления изоляции для электроустановок с напряжением до 1 кВ является наиболее востребованным испытанием.

Исключения из общих правил

Во многих сферах деятельности существуют свои внутренние требования и правила, которые регламентируют периодичность электрических измерений. Во многих случаях требования этой документации идентичны с ПТЭЭП или дублируют их.

Но, в некоторых случаях отраслевые правила устанавливают более жесткие требования к проведению испытаний и измерений.

В объеме данной статьи нет возможности перечислить полный перечень всех исключений, но основные из них мы приведем ниже:

1. Для заведений начального профессионального и высшего образования следует руководствоваться приказом N 662 от 11 марта 1998 г. Министерства общего и профессионального образования РФ:

п. 3.19.7

[В соответствии с основными направлениями работы на службу образовательного учреждения возлагаются функции осуществления контроля за] Проведением ежегодных проверок заземления электроустановок и изоляции электропроводки в соответствии с действующими правилами и нормами.

В этом случае руководство каждого образовательного учреждения обязано контролировать своевременное проведение испытаний и измерений параметров электрооборудования в соответствии с ПТЭЭП.

2. Периодичность замера сопротивления изоляции в средних учебных заведениях (школах) г. Москвы регламентирует приказ №156 от 29.03.2012 года городского департамента образования:

прил. 3, п. 2.17

Проведение замеров сопротивления изоляции эксплуатируемой электропроводки в закрытых сооружениях и помещениях с нормальной средой один раз в год; в открытых сооружениях, а также в сырых, пожароопасных и взрывоопасных помещениях один раз в шесть месяцев.

Для школьных учреждений сроки замеров сопротивления изоляции четко определены, что освобождает руководство на местах от штудирования приложений ПТЭЭП.

3. Для объектов здравоохранения следует ориентироваться на Правила пожарной безопасности для учреждений здравоохранения ППБО 07-91:

Проверка сопротивления изоляции электросети и заземления оборудования

Проверка сопротивления изоляции электросети и заземления оборудования

    В электроустановках напряжением до 1000 В с глухозаземленной нейтралью (системы TN) при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года, должно измеряться полное сопротивление петли фаза-нуль электроприемников, относящихся к данной электроустановке и присоединенных к каждой сборке, шкафу и т.д., и проверяться кратность тока КЗ, обеспечивающая надежность срабатывания защитных устройств.Внеплановые измерения должны выполняться при отказе устройств защиты электроустановок.    Приложение 3.1 Таблица 37 ПТЭЭП

    — Электропроводки, в том числе осветительные сети: Измерения сопротивления изоляции в особо опасных помещениях и наружных установках производятся 1 раз в год. В остальных случаях измерения производятся 1 раз в 3 года.

    — Стационарные электроплиты: Измерения сопротивления изоляции производится при нагретом состоянии плиты не реже 1 раза в год.
    п. 7.9. ПТЭЭП    Визуальные осмотры видимой части заземляющего устройства должны производиться по графику, но не реже 1 раза в 6 месяцев ответственным за электрохозяйство Потребителя или работником им уполномоченным.    При осмотре оценивается состояние контактных соединений между защитным проводником и оборудованием, наличие антикоррозионного покрытия, отсутствие обрывов.Результаты осмотров должны заноситься в паспорт заземляющего устройства.    п. 2.7.13 ПТЭЭП    Для определения технического состояния заземляющего устройства в соответствии с нормами испытаний электрооборудования (Приложение 3) должны производиться:измерение сопротивления заземляющего устройства;измерение напряжения прикосновения (в электроустановках, заземляющее устройство которых выполнено по нормам на напряжение прикосновения), проверка наличия цепи между заземляющим устройством и заземляемыми элементами, а также соединений естественных заземлителей с заземляющим устройством;измерение токов короткого замыкания электроустановки, проверка состояния пробивных предохранителей;измерение удельного сопротивления грунта в районе заземляющего устройства.

    Для ВЛ измерения производятся ежегодно у опор, имеющих разъединители, защитные промежутки, разрядники, повторное заземление нулевого провода, а также выборочно у 2% же.

ектроснабжения, техническое состояние заземляющего устройства должно оцениваться по результатам измерений и в соответствии с п.п.2.7.9-11.

elab18.ru

Электроизмерительные мероприятия при испытаниях электросетей

Пробой изоляции кабеля или значительный скачок напряжения способны стать причиной выхода из строя дорогостоящего оборудования, пожара, несчастного случая и других негативных последствий. Чтобы не допустить их, нужно своевременно выполнять испытания системы электроснабжения:

  • замеры напряжения в электросети, сопротивления изоляции, контура заземления;
  • контроль температуры кабелей, жил проводов и шин в зонах контактов;
  • проверку установочных автоматов линий электроснабжения;
  • контроль УЗО, систем молниезащиты, предохранителей;
  • проверку состояния кабельных линий;
  • контроль наличия маркировки, предупреждений и прочих надписей;
  • выяснение сопротивления петли «фаза – нуль» для самого удаленного участка;
  • проверку состояния присоединения устройств электросетей к контуру заземления.

После проведения диагностики, измерений и испытаний электрооборудования, поиска и выявления неисправностей выдаются рекомендации по модернизации и ремонту электросетей.

Типы испытаний электрических сетей

По завершении электромонтажных мероприятий на предприятии или другом объекте безотлагательно выполняются приемо-сдаточные испытания. Итоги проведенных измерений вносятся в техотчет, без которого невозможно сдать систему в эксплуатацию.

В соответствии с требованиями органов надзора проводятся периодические испытания электросетей. Периодичность их выполнения указывается в нормативной документации и зависит от технических особенностей электрических установок, оборудования и сетей.

Профилактические испытания выполняются для предотвращения различных неисправностей, коротких замыканий, возгорания проводки и несоответствия электрического оборудования нормативным требованиям.

Услуги электролаборатории «ПрофЭнергия»

Электролаборатория «ПрофЭнергия» осуществляет испытание электросетей в Москве и Московской области с использованием высокоточных приборов, которые внесены в Госреестр и прошли необходимые проверки. Наши сотрудники имеют 4–5 группы допуска, что позволяет им обслуживать электрическое оборудование и сети любого класса напряжения.

Заключите договор на обслуживание электросетей с нашей компанией, и все электричество на вашем объекте будет под надежным контролем! Регулярное проведение необходимых замеров и испытаний электрических сетей позволит своевременно выявлять и устранять неисправности, не допуская аварийных ситуаций.

energiatrend.ru

Своевременные испытания электрооборудования – гарантия вашей безопасности. Все работы проводятся на основании нормативных документов, где указывается периодичность обслуживания конкретного оборудования. Специалисты нашей компании квалифицированно проведут испытания электрооборудования любой сложности. Мы оформим все необходимые документы и протоколы.

Испытания электроустановок позволяют выявить нарушения и отклонения от заданных норм. Основные требования изложены в следующих документах:

  • ПУЭ (правила устройства электроустановок);
  • ПТЭЭП (правила технической эксплуатации электроустановок потребителя);
  • отраслевые нормативно-технические документы;
  • ППБ (правила пожарной безопасности).

Для каждой отдельной отрасли производственной сферы существуют особые разрешительные документы. Предупредить различные неприятные происшествия можно с помощью периодической проверки электроустановок.

Электроустановка – это совокупность машин, аппаратов, линий, вспомогательного оборудования, предназначенных для производства, преобразования, передачи, распределения электрической энергии.
оверка и испытания электроустановок помогают предотвратить аварийные ситуации.

В процессе эксплуатации оборудование всегда изнашивается, требуется замена некоторых деталей, проведение ремонта. Следует учесть, что некоторые дефекты могут быть скрытыми, поэтому обнаружить их можно только после проведения испытаний.

Своевременное устранение неисправностей обеспечивает работоспособность и безопасность установки.

Конкретные сроки проведения испытаний указаны в правилах технической эксплуатации электроустановок потребителя. На периодичность обслуживания влияют такие факторы, как заводские рекомендации, состояние оборудования, условия эксплуатации.

В приложении ПТЭЭП указана рекомендуемая периодичность проведения испытаний. Для каждого ряда электроустановок существуют дополнительные документы, где указывается рекомендуемая периодичность проверок.

Например, помещения с повышенным уровнем опасности требуют измерения сопротивления изоляции проводов раз в 6 месяцев.

Согласно ПТЭЭП, измерение сопротивления изоляции элементов электрической сети проводится:

  • при наружном размещении электропроводки, а также осветительных сетей – ежегодно, во всех остальных случаях – один раз в три года;
  • состояние кранов и лифтов – ежегодно;
  • стационарные электроплиты – ежегодно при нагретой плите.

В учреждениях здравоохранения установлены следующие сроки проведения испытаний:

  • В первый год эксплуатации проводится обязательная проверка элементов заземляющего устройства. Дальнейшая периодичность – один раз в три года.
  • Ежегодно должна проводиться проверка непрерывности цепи между заземлителем и заземляемой электромедицинской аппаратурой. Испытания также проводятся при установке новой аппаратуры.
  • Сопротивление заземляющего устройства проверяется не реже одного раза в год.

Периодичность проверки электроустановок в сфере розничной торговли и общественного питания  определяется в соответствии с определенными документами. К ним относятся межотраслевые правила по охране труда в розничной торговле, а также межотраслевые правила по охране труда в общественном питании.

Например, в сфере розничной торговли запрещается эксплуатировать оборудование без наличия защитного заземления, при снятой крышке корпуса, а также по истечении срока очередного ежегодного испытания и проверки состояния защитного заземления.

Соблюдение безопасности в сфере общественного питания подразумевает проведение измерения сопротивления изоляции электросети раз в 12 месяцев. Это касается помещений, где отсутствует повышенная электроопасность. В случае повышенного уровня опасности измерения должны проводиться не реже одного раза в шесть месяцев. Помимо этого, ежегодно проводятся испытания защитного заземления (зануления).

www.enelux.ru

Мы уже разобрали, какие именно работы необходимо проводить и пришло время обсудить их периодичность. Если вы выступаете в роли заказчика электроизмерений, изучите этот вопрос досконально, чтобы не тратить деньги чаще, чем необходимо, но и не «проспать» момент когда снова нужно проводить испытания.

На первый взгляд все просто: периодичность измерения сопротивления изоляции электропроводок — 1 раз в 3 года, а в особо опасных помещениях и наружных установках — 1 раз в год. Такие указания приводятся в ПТЭЭП (прил. 3.1, табл. 37).

Кроме того, периодичность измерения сопротивления изоляции кранов и лифтов, а также стационарных электроплит (в нагретом состоянии) также не реже 1 раза в год.
Но на ПТЭЭП история не заканчивается.

В ряде отраслей народного хозяйства существуют внутренние циркуляры, руководящие документы, правила и приказы различных министерств и ведомств, регламентирующие, в том числе, и измерение сопротивления изоляции. Иногда их требования по периодичности совпадают с ПТЭЭП, а иногда являются более жесткими.

Межотраслевые правила по охране труда в общественном питании ПОТ РМ-011-2000
5.6. Сопротивление изоляции электросети в помещениях без повышенной электроопасности следует измерять не реже 1 раза в 12 месяцев, в особо опасных помещениях (или с повышенной опасностью) — не реже 1 раза в 6 месяцев.

Межотраслевые правила по охране труда в розничной торговле ПОТ РМ 014-2000
5.1.17.

льзя эксплуатировать оборудование, не имеющее защитного заземления, при снятой крышке корпуса, закрывающей токонесущие части, а также после истечения срока очередного ежегодного испытания и проверки состояния защитного заземления.

Замер сопротивления заземления и изоляции проводов производится периодически, не реже одного раза в год.8.5.18.

Сопротивление изоляции электросети в помещениях без повышенной опасности измеряется не реже одного раза в 12 месяцев, в особо опасных помещениях (или с повышенной опасностью) — не реже одного раза в 6 месяцев.

8.5.35. У светильников, находящихся в эксплуатации, не реже одного раза в 6 месяцев следует производить измерение сопротивления изоляции. Оно должно быть не менее 0,5 МОм.

3.7.6. Сопротивление изоляции электросети в помещениях без повышенной опасности следует измерять не реже одного раза в двенадцать месяцев, в особо опасных помещениях (с повышенной опасностью) — не реже одного раза в шесть месяцев.

Для чего и в каких случаях измеряют сопротивление изоляции

Проверка сопротивления изоляции электросети и заземления оборудования

Изоляция — составляющая часть любой электроустановки. От состояния изоляции напрямую зависит работоспособность электроустановки. Материалы, имеющие высокое электрическое сопротивление — диэлектрики, позволяют значительно снизить утечки электрического тока. В качестве изолирующих материалов применяют различные полимеры, резина, фарфор, стекло, масло, элегаз, воздух и др.

Сопротивление изоляции является основным показателем исправного состояния электроустановки. В Правилах по охране труда при эксплуатации электроустановок (ПОТЭЭ) в пункте 1.3 имеется требование:

Цитата из ПОТЭЭ п. 1.3

Также, в Правилах технической эксплуатации электроустановок потребителей (ПТЭЭП), в пункте 1.2.2 есть требование:

Цитата из ПТЭЭП п. 1.2.2.

При эксплуатации замеряют сопротивление изоляции, чтобы определить снижение диэлектрических свойств. Минимально допустимые значения и периодичность измерений сопротивления изоляции элементов электрических сетей до 1000 В указаны в Правилах технической эксплуатации электроустановок потребителей (ПТЭЭП) в приложении 3.1., в таблице 37.

Часть таблицы 37 из приложения 3.1. ПТЭЭП.Часть таблицы 37 из приложения 3.1. ПТЭЭП.

Остальные нормы и таблицы испытаний электрооборудования приведены в Приложении 3 ПТЭЭП.

Согласно данной таблице, измерение необходимо производить 1 раз в год в помещениях с особой опасностью в отношении поражения электрическим током и наружных электроустановках, а в остальных случаях 1 раз в 3 года.

К помещениям особо опасным, пункта 1.1.13 Правила устройства электроустановок (ПУЭ) относят помещения с такими факторами:

  • наличие высокой температуры в течении длительного периода времени;
  • высокого содержания различной токопроводящей пыли в воздухе;
  • помещения, где возможно одновременное касание человека заземлённых частей и корпуса электроустановки;
  • имеется повышенный уровень влажности;
  • помещения имеющие полы, выполненные из токопроводящих материалов;
  • помещения, где присутствуют химические или органические активные вещества в окружающей среде;
  • помещения, где имеется наличие 2-х и больше опасных факторов;
  • отрытые распределительные устройства электроустановок.

Ещё, согласно таблицы из пункта 28 ПТЭЭП, приложения 3, испытания электрооборудования проводятся при капремонтах и текущих ремонтах, а также проводятся межремонтные испытания.

Часть таблицы из пункта 28, приложения 3 ПТЭЭП Часть таблицы из пункта 28, приложения 3 ПТЭЭП Часть таблицы из пункта 28, приложения 3 ПТЭЭП

Периодичность определяет технический руководитель предприятия, согласно пункту 3.6.2 ПТЭЭП.

Цитата из ПТЭЭП п. 3.6.2.

Основные причины неисправности изоляции

Сопротивление изоляции, то есть её способность выдерживать напряжение не является постоянной и меняется со временем. В процессе работы электроустановки на состояние изоляции действует множество факторов — наличие повышенной влажности, загрязнений, температурный режим, работа электроустановки с перегрузкой, перенапряжения, старение, механические повреждения.

Указанные факторы могут оказывать воздействие как поодиночке, так и комплексно, значительно усиливая воздействие друг друга. Например, оборудование производственного цеха находилось долгое время в консервации. Соответственно на состояние изоляции электрооборудования оказывало влияние нескольких факторов — повышенная влажность, загрязнение, перепады температур и т.п.

Диаграмма найденная на просторах интернета, на которой перечислены вредные факторов и типовые проблемы с изоляцией

Под воздействием этих факторов диэлектрические свойства изоляции снижаются настолько, что может произойти пробой изоляции на землю или привести к короткому замыканию. Своевременное определение изменений состояния изоляции, обслуживающим персоналом электроустановки, позволяет предотвратить поражение человека электрическим током вследствие разрушения изоляции, а также выход электроустановки из строя или пожар.

Как и чем проводят измерение

Измерения изоляции проводят специальным прибором — мегаомметром, а электрики между собой его часто называют “мегером” или “мегомметром”. Кстати последнее устаревшее и пошло от названия завода, который производил такое оборудование.

В отличие от другого прибора для измерения сопротивления — омметра, мегаомметры при измерении подают высокое напряжение в измеряемую электрическую цепь. Приборы могут иметь встроенный генератор, который приводится в движение ручным приводом или получать питание от аккумулятора.

Аналоговый мегаомметр с генератором, который приводится во вращение ручкой, расположенной сбоку

По принципу отображения информации приборы могут иметь аналоговую логарифмическую шкалу или цифровой дисплей. Мегаомметры, как правило, выпускают со следующими пределами напряжений: 500 В, 1000 В, 2500 В, 5000 В.

Мегаомметр, как и любой другой измерительный прибор, должен проходить периодическую поверку в аттестованной организации и иметь соответствующий штамп.Цифровой мегаомметр
В гл. 39 ПОТЭЭ указаны требования к работникам, проводящих измерения мегаомметром:

Цитата из ПОТЭЭ, п 39.28-31.Важно! Нельзя прикасаться к токоведущим частям, к которым подключён прибор во время измерений. И после измерений нужно кратковременно заземлить токоведущие части для снятия с них остаточного заряда.

Замеры сопротивления изоляции проводят между фаз, между фазой и нулём, между фазой и землёй и между землёй и нулём. Показатели сопротивления изоляции зависят от температуры окружающей среды. Кроме специально оговорённых в инструкциях случаях, измерение необходимо производить при температуре выше +5°С.

Если температура будет ниже, погрешности измерений будут неизбежно сказываться на точности результатов.

Схема подключения мегаомметра

Различия в определениях: «испытание электрической прочности» и «измерение сопротивления»

Нужно отличаться понятия «испытание электрической прочности» и «замер сопротивления изоляции». Испытание электрической прочности — это испытание на пробой, проводится для выяснения возможности изоляции выдержать повышение напряжения, к примеру, при ударе молнии или при других перенапряжениях.

Эти испытания производят с применением установок для испытания оборудования, которые могут быть как стационарными, так и передвижными. При наличии неисправностей, изоляция оборудования, которое подвергается таким испытаниям может разрушиться.

К примеру, прожиг кабеля-подача с помощью специальной установки, высокого напряжения на электрический кабель, с целью точного определения места замыкания на землю. Результатом таких испытаний может быть разрушение изоляции кабеля.

Повреждение кабеля при его прожиге (фото найдено в поиске по картинкам в Яндексе)Установка прожигающая АПУ-2М

В отличие от испытаний электрической прочности, замер сопротивления изоляции в нормальных условиях при помощи мегаомметра является неразрушающим измерением. Такие измерения выполняются с использованием постоянного тока. Напряжение при таком замере существенно ниже, чем при проведении испытаний на электрическую прочность. Результаты, полученные при измерениях, могут выражаться в кОм, мОм, Гом, Том.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.