Назначение дросселя

Содержание

Что такое дроссель

Назначение дросселя

Дроссель – это катушка индуктивности, которая обладает большим сопротивлением по отношению к переменному току. В схеме постоянного тока дроссель оказывает гораздо меньшее сопротивление. Название электрического компонента имеет немецкое происхождение – Drossel, что означает сглаживание, торможение.

Конструкция

Принципиальная схема дросселя представляет собой намотанный провод на ферромагнитный сердечник. Отсюда становится понятно, что такое дроссель.  Электроэлемент напоминает трансформатор, но имеет одну обмотку.

Принцип работы

Принцип работы электрического дросселя заключается в сдерживании резкого нарастания тока и сглаживании линии падения напряжения. Как работает электрический дроссель, видно на примере люминесцентного светильника. Чтобы газ в колбе не сгорел, а постепенно разогревался, катушка постепенно доводит ток до номинального значения.

Входящий ток «тратит» свою силу на индукцию магнитного поля вокруг катушки. Когда магнитный поток достигнет своего максимума, ток начнёт проходить беспрепятственно через катушку.

Важно! Дроссели встречаются во всех электрических схемах. Сглаживание первоначального электрического напряжения защищает радио,- и электрические компоненты от критических перегрузок.

Устройство индуктивной катушки

Прибор подавляет происходящие в переменном токе пульсации. В электрических цепях проходит электричество разной частоты, поэтому для подавления помех применяют низкочастотные и высокочастотные катушки.

Низкочастотные устройства

Катушки имеют большие размеры. Провод в них намотан вокруг сердечника из трансформаторной стали. В аппаратуре, питание которой обеспечивается мощным напряжением, устанавливают дроссельные блоки низкой частоты. Индуктивные катушки в каскадном исполнении противостоят резким изменениям характеристик тока.

Что такое электрическое дросселирование, знает каждый электрик. На промышленных предприятиях без этого не обходится ни одно электрооборудование.

Высокочастотные элементы

Высокочастотный электронный дроссель гораздо меньше низкочастотного собрата. Катушка может быть выполнена из однослойной или многослойной намотки. Для высокочастотных дросселей применяют ферритовые сердечники или стержни из магнитного диэлектрического материала.

Область применения

Катушки индуктивности используют, как:

  • токоограничители;
  • катушки насыщения;
  • фильтры сглаживания;
  • магнитные усилители (МУ);
  • резонансные контуры;
  • электронный дроссель в радио,- и компьютерных схемах.

Токоограничители

Для чего нужны дроссели в качестве токоограничителей, можно узнать из следующего списка:

  1. Катушки без сердечников имеют маленькое сопротивление, поэтому они эффективно ограничивают величину тока короткого замыкания. Даже малейшее уменьшение мощности дуги короткого замыкания имеет большое значение.
  2. Во время пуска мощных электродвигателей включаются в работу катушки индуктивности. После набора максимальных оборотов аппаратом катушка отключается пусковым устройством.
  3. В лампах дневного света электрические дроссели препятствуют резкому включению тока максимальной величины. В результате происходит постепенный разогрев ртути и переход её в парообразное состояние. У ламп ДРЛ 250 дроссели находятся внутри колбы. Дроссели ламп ДНАТ находятся внутри кожуха отдельно от колбы.

Обратите внимание! Аббревиатура ДРЛ означает Дуговая Ртутная Лампа. ДНАТ – Дуговая Натриевая Трубка.

Катушки насыщения

После насыщения магнитного поля величина сопротивления катушки перестаёт расти. Ранее катушки насыщения составляли основу стабилизаторов напряжения. Сегодня их заменили электронные системы.

Фильтры сглаживания

Что это такое в электронике дроссель? Это фильтры сглаживания, которые выпрямляют линию пульсации переменного напряжения. В результате обеспечивается стабильность работы электронной аппаратуры. Такой фильтр выглядит в виде бочонка на USB-кабеле. Внутри него находится одновитковая катушка. В электронных платах используют дроссели марки r68.

Магнитные усилители (МУ)

Они были включены в систему управления электромоторов. Магнитная индукция в сердечнике насыщалась намагничиванием стали сердечника. В пускателе использовалось сразу несколько обмоток. Сегодня вместо магнитных пускателей применяют тиристорные системы.

Схема магнитного пускателя

Резонансные контуры

Резонансную схему применяют в тюнерах. Индуктивная катушка параллельно с конденсатором объединена в единую систему, что составляет резонансный контур. Схема обеспечивает малое сопротивление с фиксированной частотой.

Электронный дроссель в радио,- и компьютерных схемах

Катушки индуктивности типа r68 применяют в монтажных платах с целью выделения токов определённой частоты. Также они исполняют роль защиты, как от внешних, так и внутренних помех частей схемы.

Основные характеристики

К основным характеристикам относятся следующие показатели:

  • величина индукции;
  • потеря сопротивления;
  • потери сердечника;
  • потери из-за вихревых токов;
  • паразитная ёмкость;
  • ТКИ (температурный коэффициент индуктивности).

Дополнительная информация. Характеристики катушек индуктивности нужны для расчёта новых моделей устройств. Параметры также используются при проектировании печатных плат.

Разновидности дросселей

Их различают по назначению и способу установки. Однофазные катушки индуктивности используют в лампах дневного света, питающихся от сети 220 в. Трёхфазные устройства работают в схемах питания напряжением 380 вольт для дуговых ртутных ламп и дуговых натриевых трубок.

Встраиваемые модели монтируют в корпусе прибора. В этом случае устройства защищены от пыли и влаги. В закрытом виде устройства помещены в специальных коробах.

Электронные аналоги

На смену индукционным катушкам в их традиционном исполнении пришли полупроводниковые радиодетали: транзисторы, тиристоры.

Следует заметить. Для высокочастотных приборов транзисторы не используют.

Маркировка малогабаритных устройств

Устройства для электронных плат имеют размеры не более 2-3 см. Нанести читаемую маркировку в цифровом или буквенном обозначении практически невозможно. Для этого применяют цветовую маркировку электронных дросселей. Дроссели на схемах изображают в виде спирали с параллельной чертой.

На цилиндрический корпус радиодетали наносят несколько цветных колец. Первые две полосы (слева направо) означают величину индуктивности, измеряемую в мГенри. Третья полоса указывает множитель, на который нужно умножить число индуктивности. Четвёртое кольцо выражает допустимое отклонение в % от номинала. Если его не окажется на корпусе детали, то принято считать допуск в пределах 20%.

Таблица цветовой маркировки

Например, цвета колец расположились в следующем порядке: коричневый, жёлтый, оранжевый и серебристый. Это означает величину индуктивности 14 mH, где допуск отклонения составляет 10%.

Технический прогресс не стоит на месте. С каждым годом появляются новые аналоги устаревших моделей. Разработка новых технологий во всех сферах деятельности человека требует совершенствования радиодеталей, в том числе дросселей.

Принцип работы дросселя

Назначение дросселя

Катушка индуктивности – устройство, основным компонентом которого является проводник скрученный в кольца или обвивающий сердечник.

При прохождении тока, вокруг скрученного проводника (катушки), образуется магнитное поле (она может концентрировать переменное магнитное поле), что и используется в радио- и электротехнике.

К точной и компьютерной технике технике больше близок дроссель (Drossel, регулятор, ограничитель), так как он чаще всего применяется в цепях питания процессоров, видеокарт, материнских плат, блоков питания.

В последнее время применяются индукторы закрытые в корпуса из металлического сплава для уменьшения наводок, излучения, шумов и высокочастотного свиста при работе катушки.

Дроссель служит для уменьшения пульсаций напряжения, сглаживания или фильтрации частотной составляющей тока и устранения переменной составляющей тока. Сопротивление дросселя увеличивается с увеличением частоты, а для постоянного тока сопротивление очень мало.

Характеристики дросселя получаются от толщины проводника, количества витков, сопротивления проводника, наличия или отсутствия сердечника и материала, из которого сердечник сделан.

Особенно эффективными считаются дроссели с ферритовыми сердечниками (а также из альсифера, карбонильного железа, магнетита) с большой магнитной проницаемостью.

Используется в выпрямителях, сетевых фильтрах, радиотехнике, питающих фазах высокоточной аппаратуры и другой технике требующей стабильного и «правильного» питания. Многослойная катушка может выступать и в качестве простейшего конденсатора, так как имеет собственную ёмкость. Правда, от данного эффекта пытаются больше избавиться, чем его усиливать и он считается паразитным.

Как работает дроссель

В цепях переменного тока, для ограничения тока нагрузки, очень часто применяют дроссели – индуктивные сопротивления. Перед обычными резисторами здесь у дросселей имеется серьезные преимущества – значительная экономия электроэнергии и отсутствие сильного нагрева.

Устройство дросселя

Устроен дроссель очень просто – это катушка из электрического провода, намотанная на сердечнике из ферромагнитного материала. Приставка ферро, говорит о присутствии железа в его составе (феррум – латинское название железа), в том или ином количестве.

Принцип работы дросселя основан на свойстве, присущем не только катушкам но и вообще, любым проводникам – индуктивности.

Это явление легче всего понять, поставив несложный опыт.

Для этого требуется собрать простейшую электрическую цепь, состоящую из низковольтного источника постоянного тока (батарейки), маленькой лампочки накаливания, на соответствующее напряжение и достаточно мощного дросселя (можно взять дроссель от лампы ДРЛ-400 ватт).

Без дросселя схема будет работать как обычно – цепь замыкается, лампа загорается. Но если добавить дроссель, подключив его последовательно нагрузке(лампочке), картина несколько изменится.

Присмотревшись, можно заметить, что, во-первых, лампа загорается не сразу, а с некоторой задержкой, во-вторых – при размыкании цепи возникает хорошо заметная искра, прежде не наблюдавшаяся.

Так происходит, потому что в момент включения ток в цепи возрастает не сразу – этому препятствует дроссель, некоторое время поглощая электроэнергию и запасая ее в виде электромагнитного поля.

Эту способность и называют – индуктивностью.

Чем больше величина индуктивности, тем большее количество энергии может запасти дроссель.

Еденица величины индуктивности – 1 Генри В момент разрыва цепи запасеная энергия освобождается, причем напряжение при этом может превысить Э.Д.С.

используемого источника в десятки раз, а ток направлен в противоположную сторону. Отсюда заметное искрение в месте разрыва. Это явление называется – Э.Д.С. самоиндукции.

Если установить источник переменного тока вместо постоянного, использовав например, понижающий трансформатор, можно обнаружить что та же лампочка, подключенная через дроссель – не горит вовсе. Дроссель оказывает переменному току гораздо большое сопротивление, нежели постояному. Это происходит из за того, что ток в полупериоде, отстает от напряжения.

Получается, что действующее напряжение на нагрузке падает во много раз(и ток соответственно), но энергия при этом не теряется – возвращается за счет самоиндукции обратно в цепь. Сопротивление оказываемое индуктивностью переменному току называется – реактивным.

Его значение зависит от величины индуктивности и частоты переменного тока. Величина индуктивности в свою очередь, находится в зависимости от количества витков катушки и свойства материала сердечника, называемого – магнитной проницаемостью, а так же его формы.

Магнитная проницаемость – число, показывающее во сколько раз индуктивность катушки больше с сердечником из данного материала, нежели без него(в идеале – в вакууме.)Т. е – магнитная проницаемость вакуума принята за еденицу.

В радиочастотных катушках малой индуктивности, для точной подстройки применяются сердечники стержеобразной формы. Материалами для них могут являться ферриты с относительно небольшой магнитной проницаемостью, иногда немагнитные материалы с проницаемостью меньше 1.В электромагнитах реле – сердечники подковоообразной и цилиндрической формы из специальных сталей.

Для намотки дросселей и трансформаторов используют замкнутые сердечники – магнитопроводы Ш – образной и тороидальной формы. Материалом на частотах до 1000 гц служит специальная сталь, выше 1000 гц – различные ферросплавы. Магнитопроводы набираются из отдельных пластин, покрытых лаком.

У катушки, намотанной на сердечник, кроме реактивного(Xl) имеется и активное сопротивление(R). Таким образом, полное сопротивление катушки индуктивности равно сумме активной и реактивной составляющих.

Как работает трансформатор

Рассмотрим работу дросселя, собранного на замкнутом магнитопроводе и подключенного в виде нагрузки, к источнику переменного тока. Число витков и магнитная проницаемость сердечника подобраны таким образом, что его реактивное сопротивление велико, ток протекающий в цепи соответственно – нет.

Ток, переодически изменяя свое направление, будет возбуждать в обмотке катушки (назовем ее катушка номер 1) электромагнитное поле, направление которого будет также переодически меняться – перемагничивая сердечник. Если на этот же сердечник поместить дополнительную катушку(назовем ее – номер 2), то под действием переменного электромагнитного поля сердечника, в ней возникнет наведенная переменная Э.Д.С.

Если количество витков обеих катушек совпадает, то значение наведенной Э.Д.С. очень близко к значению напряжения источника питания, поданного на катушку номер 1.

Если уменьшить количество витков катушки номер 2 вдвое, то значение наведенной Э.Д.С. уменьшится вдвое, если количество витков наоборот, увеличить – наведенная Э.Д.С. также, возрастет.

Получается, что на каждый виток, приходится какая-то определенная часть напряжения.

Обмотку катушки на которую подается напряжение питания (номер 1) называют первичной. а обмотка, с которой трансформированое напряжение снимается – вторичной .

Отношение числа витков вторичной(Np ) и первичной (Ns ) обмоток равно отношению соответствующих им напряжений – Up (напряжение первичной обмотки) и Us (напряжение вторичной обмотки).

Таким образом, устройство, состоящее из замкнутого магнитопровода и двух обмоток в цепи переменного тока, можно использовать для изменения питающего напряжения – трансформации. Соответственно, оно так и называется – трансформатор.

Для чего нужен дроссель

Виды дросселей

Дроссель используется вместо последовательного резистора, потому что обеспечивает лучшую фильтрацию (меньше остаточной пульсации переменного тока на источнике питания, что означает меньшее гудение на выходе усилителя) и меньшее падение напряжения. «Идеальный» индуктор будет иметь нулевое сопротивление постоянному току.

При использовании резистора большего размера, вы быстро достигаете точки, где падение напряжения возрастает до пиковых величин, и, кроме того, «провал» питания становится значительным, потому что разность токов между полной выходной мощностью и холостым ходом может быть немалой, особенно в усилителе класса AB.

Существует две распространенные конфигурации источника питания: конденсаторный вход и дроссельный вход.

Входной фильтр конденсатора не обязательно должен иметь дроссель, но для дополнительной фильтрации тот необходим. Источник питания дросселя по определению обязан оснащаться дросселем.

Источник питания с дросселем

На входе конденсатора будет конденсатор фильтра, следующий непосредственно за выпрямителем. Тогда он может иметь или не иметь второго фильтра, состоящего из последовательного резистора или дросселя, за которым следует другой конденсатор.

Сеть «колпачок – индуктор – колпачок» обычно называется сетью «пи-фильтр».

Преимущество входного фильтра конденсатора заключается в более высоком выходном напряжении, но он имеет более низкое регулирование напряжения, чем входной фильтр дросселя.

Источник питания дросселя будет иметь дроссель, следующий сразу за выпрямителем. Основное преимущество входного питания дросселя – лучшее регулирование напряжения, но за счет гораздо более низкого выходного напряжения. Входной фильтр дросселя должен иметь определенный минимальный ток, протекающий через него для поддержания регулирования.

Дроссель в собранном приборе

Пример:

Разница напряжений между двумя типами фильтров может быть довольно большой. Например, предположим, что у вас есть трансформатор 300-0-300 и двухполупериодный выпрямитель.

Если вы используете конденсаторный входной фильтр, вы получите максимальное напряжение постоянного тока без нагрузки в 424 вольт, которое снизится до напряжения, зависящего от тока нагрузки и сопротивления вторичных обмоток.

Если вы используете тот же трансформатор с входным фильтром дросселя, пиковое выходное напряжение постоянного тока будет составлять 270 В и будет гораздо более строго регулироваться, чем входной фильтр конденсатора (меньше перемен напряжения питания с изменениями тока нагрузки).

Как обозначается дроссель на схеме

Условные обозначения:

Условное графическое обозначение дросселей

Из чего состоит дроссель

Элементы:

  • катушка;
  • провод, намотанный на сердечник;
  • магнитопровод.

Есть схожесть с трансформатором, но слой обмотки всего один. Такая конструкция помогает стабилизировать сеть, а также исключить шанс резкого скачка напряжения.

Как подключить дроссель

Схема подключения очень простая и представляет собой цепь последовательно соединённого дросселя и самого устройства ДРЛ 250. Подключение идёт через сеть 220 вольт и работает при обычной частоте. Поэтому их без труда можно поставить в домашнюю сеть. Дроссель работает как стабилизатор и корректировщик напряжения.

Схема подключения дросселя

Как отличить резистор от дросселя

По внешнему виду: от резисторов отличаются обычно толщиной (дроссели толще), от конденсаторов – неправильной формой «капельки».

Более точный способ – сопротивление. У дросселя оно почти нулевое.

Что такое дроссель и для чего он нужен, объясняю просто и доступно

Назначение дросселя

Здравствуйте уважаемые посетители моего канала! В этой статье я хочу поговорить с вами о таком важном и многими до конца не понятым элементом как дроссель. И постараюсь буквально на пальцах объяснить, как же этот загадочный радиоэлемент функционирует.

yandex.ru

Что такое дроссель

Итак, по факту дроссель – это не что иное, как самая обычная медная катушка в большинстве случаев намотанная на ферритовый либо же металлический сердечник. Но так же дроссель может быть и вообще без сердечника.

yandex.ru

Как он работает

Итак, мы имеем дроссель (катушку из меди намотанную на сердечник). Если мы начнем пропускать через него ток, то он начинает формировать электромагнитное поле вокруг катушки. При этом для формирования поля нужна энергия и получается, что в первый момент протекания тока он тратится на формирование этого магнитного поля.

То есть, грубо говоря, в первый момент времени протекания тока дроссель приостанавливает протекание тока по нему. Как только электромагнитное поле полностью сформировано дроссель уже не препятствует протеканию тока и он продолжает движение дальше.

yandex.ruЕсли увеличить напряжение на дросселе, то сила тока так же увеличивается, а дроссель увеличивает свое магнитное поле. Уже на выходе из дросселя рост напряжения будет происходить с запаздыванием, так как часть энергии была потрачена на формирование электромагнитного поля.

А теперь давайте представим, что рост напряжения имел импульсный характер. Дроссель его (импульс) полностью поглотит и на выходе будет стабильное напряжение без всяких скачков.

Данный эффект активно используется, например, в сетевых фильтрах, которые благодаря установленным дросселям успешно отфильтровывают импульсные помехи напряжения.

yandex.ru

Каждый существующий дроссель характеризуется такой величиной как индуктивность (физическая величина, характеризующая магнитные свойства электрической цепи).

При этом верно утверждение: чем больше индуктивность проводника, тем большим будет сформированное магнитное поле при идентичном значении протекающего электрического тока.

Индуктивность измеряется в “H” – Генри и чем большей индуктивностью обладает дроссель, тем больше энергии нужно потратить чтобы полностью сформировать электромагнитное поле вокруг него.

Чем больше витков в катушке, тем большей индуктивностью она будет обладать, а при помещении в катушку сердечника индуктивность увеличивается многократно.

yandex.ru

Кстати, если индуктивность дросселя будет достаточна большой, а частота тока высокой, то он (дроссель) просто напросто полностью заблокирует протекание переменного электрического тока, так как просто не будет успевать насыщаться до переполюсовки питания.

Дроссель в понижающих DC-DC преобразователях

Эффект накопления электромагнитного поля в дросселе активно используется в понижающих DC-DC преобразователях, в которых используется еще одно крайне любопытное свойство дросселя, а именно:

yandex.ru

Итак, наш дроссель накопил электромагнитное поле, вот только хранить его он ну никак не умеет и отдает его именно в виде электричества (а не тепла).

Это происходит следующим образом: дроссель буквально бомбардируется короткими импульсами, которые сформированы транзистором из линии питания.

yandex.ruДавайте проследим путь одного импульса: Происходит импульс величиной в 12 Вольт, но настолько короткий, что дроссель не успевает насытиться полностью (поле не до конца сформировано).

После подачи импульса электрическая цепь трансформируется и уже дроссель выполняет роль источника питания.

yandex.ru

Но так как насыщение произошло не полностью, он отдает напряжение уже не 12 Вольт, а более низкое, например, 5 Вольт.

При этом, регулируя продолжительность импульса, мы тем самым контролируем (увеличиваем или же уменьшаем) напряжение, которое приходит на нагрузку.

При этом таких импульсов может быть до нескольких тысяч и даже более в одну секунду. А для того, чтобы сгладить пульсацию, в схему добавляется конденсатор.

yandex.ru

Дроссель в повышающих DC-DC

А теперь давайте поговорим о самом интересном свойстве дросселя. Как вы, наверное, уже поняли дроссель никак не может сохранить накопленную энергию и отдает ее сразу. А как вы думаете, что произойдет, если полностью насыщенный дроссель мгновенно отключить от цепи?

yandex.ru

А произойдет то, что дроссель будет настолько стремиться отдать свой заряд, что на его выводах будет существенно расти напряжение до таких величин, пока не произойдет пробой воздушной прослойки между выводами дросселя.

Именно это уникальное свойство используется в повышающих преобразователях.

Работает это следующим образом: пока цепь с дросселем замкнута, ток преспокойно протекает по замкнутой цепи.

yandex.ru

Но если в цепи установить размыкатель (обычно это транзистор), то в момент размыкания цепи в дросселе импульсно возрастет напряжение и если постоянно выполнять размыкание и замыкание, то можно будет снимать импульсное высокое напряжение.

Не забываем, что из цепи никуда не делся источник питания и получается, что в таком случае напряжение источника питания и дросселя суммируется.

Заключение

Вот такими удивительными свойствами обладает, казалось бы, самый обыкновенный дроссель. Если вам понравилась статья, тогда обязательно оцениваем его лайком и репостом, так же милости просим в комментарии. Спасибо за внимание!

Дроссель что это такое, принцип работы. Применение в электрике, разновидность

Назначение дросселя

Чтобы зажечь лампу, натриевую или люминесцентную, необходимо выровнять ток. При включении в сеть лампы, для выполнения этой функции используется дроссель. Он является в данном случае пускорегулирующей аппаратурой.

Это устройство необходимо чтобы лампа загорелась. Без данного элемента лампа не может быть запущена. Лампа в обычном режиме может разогреваться на протяжении пяти минут, а иногда и больше.

Пусковой ток, которые выдает дроссель может быть значительно больше рабочего напряжения.

Вообще есть два типа дросселей – с одной и двумя обмотками. Однообмоточный также называется ДНаТ. В статье будут рассмотрены все аспекты работы дросселей, как они действуют и какие функции выполняет. В заключении читатель найдет интересный материал на данную тему и видеоролик, который поможет детальнее разобраться в работе дросселей.

Дроссель ДНаТ разновидности и способы подключения

Для того, чтобы обеспечить зажигание и выравнивание тока натриевых ламп, как высокого, так и низкого давления, при включении осветительных приборов в сеть, применяется дроссель днат, к которым относятся пускорегулирующая аппаратура и балласты.

Это основные устройства, без которых применение натриевых ламп является не то, чтобы нецелесообразным, а попросту бессмысленным.

Помимо пускорегулирующего аппарата, необходимо приобрести также импульсное зажигающее устройство, сокращенно ИЗУ, которое позволяет разогреть лампу, при этом используется импульс, который позволяет получить разряд в газовой смеси.

В настоящее время двухобмоточные дроссели считаются морально устаревшими, поэтому применяются достаточно редко. Пускорегулирующий аппарат можно приобрети как отечественного производства, так и зарубежного, данное утверждение касается и импульсного зажигающего устройства. Главное условие, заключается в том, что мощность дросселя и ИЗУ должна соответствовать мощности натриевой лампы.

Дроссель для люминесцентной лампы. Отметим тот факт, что импульсное зажигающее устройство (ИЗУ) может быть двух видов. К первому виду относятся ИЗУ двухпроводные, ко второму виду относятся ИЗУ с тремя проводами.

Соответственно, трех проводные устройства надежнее, но при этом цена на них дороже, поэтому вопрос упирается в экономическую целесообразность приобретения изделия. Следующим термином, который относится к такому понятию, как дроссель днат, является балласт.

Балластом принято называть пускорегулирующий аппарат и импульсное запускающее устройство, которые имеют металлический корпус.

Существуют и открытые пра. Вопрос выбора открытого или закрытого устройства, зависит от предпочтений отдельно взятого электрика. К достоинства пра в металлическом корпусе отнесем более низкую рабочую температуру, гарантии производителя относительно сборки изделия, и более простую схему монтажа в осветительных приборах.

Остановимся на схеме подключения днат. Итак, основное условие, это соответствие мощности дросселя, мощности лампы. Например, если у вас дроссель днат 600, то и натриевая лампа должна быть 600.

Правило простое, но если его не соблюдать, то период эксплуатации осветительного прибора значительно снизится, и светоотдача упадет до критической отметки.

Причем, для соединений необходимо применять медный провод, моножильный или многожильный, сечением 0,75х1,5, хотя также вопрос на любителя, можно взять провод и большего сечения, так сказать, с запасом.

Уделите внимание вопросу приобретения сетевого шнура, он также должен выдерживать большие нагрузки, сечение должно быть порядка 1,5 – 2,5 мм, даже если дроссель для днат 150.

Примерные параметры дросселей приведены в таблице ниже.

Таблица расчетов основных свойств дросселя.Следующий момент, на который обращаем внимание, это необходимость установки предохранителя. Многие будут утверждать, что это лишняя трата денег, но это высказывание не соответствует истине.

Предохранитель, как верный страж, спасет при пробое балласта, когда возможны различные неприятности, которые могут закончиться либо взрывом лампы, пожаром или банальным выбиванием пробок, если у вас не прикручены жучки.

Автомат лучше всего приобретать двухполюсной, так более удобно, чтобы не заморачиваться, как необходимо вставить вилку в розетку.

Стоит почитать: все об электолитических конденсаторах.

Причем к выбору автоматов необходимо подойти со всей степенью серьезности. Как, впрочем, и к покупке других деталей, таких как дроссель днат 250, пускорегулирующая аппаратура или импульсное зажигающее устройство. Поэтому, необходимо покупать комплектующие исключительно в торговых точках, которые не занимаются продажей бракованного неликвида.

Будет интересно➡  Обозначение дросселей на схеме

При этом лучше переплатить и купить нормальный автомат или дроссель, чем недоплатить и купить ПРА для ДНаТ произведенное китайской промышленностью.

Чтобы потом не получилось, как в русской пословице: скупой платит дважды.

Схемы подключения всех обозначенных в статье устройств, в каждом конкретном случае разные, поэтому необходимо воспользоваться услугами профессионального электрика, который выполнит работу качественно.

Потери в обмотках

Существуют два принципиально разных вида потерь в дросселях: потери в сердечнике и потери в обмотках. Первые обусловлены вихревыми токами внутри самого сердечника и магнитными свойствами материала — потерями на перемагничивание, отображаемыми в виде петли гистерезиса. Причина потерь в обмотках — это сопротивление самих проводов, обычно медных.

Дроссели, используемые в импульсных силовых приборах, подвержены воздействию ВЧ-пульсаций тока, что может привести к существенному росту эффективного сопротивления обмотки и связанных с ним потерь в медных проводниках. Сопротивление обмотки силовых дросселей включает в себя две составляющие: сопротивление постоянному и переменному току, возникающее в результате действия скин-эффекта и эффекта близости.

Изменение тока в проводе индуцирует магнитный поток, который, в свою очередь, приводит к снижению тока в центральной части провода до очень малых величин. Это ведет к уменьшению эффективного поперечного сечения проводника и увеличению его сопротивления с ростом частоты.

Поэтому чем выше частота и ток, тем больше потери мощности.

На рабочих частотах той цепи, в которую включен дроссель, сопротивление переменному току может становиться очень большим, часто намного превышающим сопротивление по постоянному току, что ведет к существенному росту потерь в медных проводниках.

Кроме того, в силовых дросселях, оснащенных сердечниками с зазором, магнитное поле в зоне воздушного промежутка создает сильный локальный эффект близости, способный значительно увеличить сопротивление медных проводников по переменному току, а, значит, привести к росту соответствующих потерь и даже выходу дросселя из строя.

Все описанные явления влияют на величину потерь мощности в любом электромагнитном устройстве. Взаимосвязь этих явлений значительно усложняет процесс разработки дросселей. Например, один из распространенных способов уменьшения сопротивления по переменному току — применение литцендрата.

Однако при этом значительно снижается поперечное сечение проводника, что ведет к резкому росту сопротивления постоянному току.

Рассмотрим другой пример. Для снижения потерь в обмотках при работе в режимах высоких постоянных токов часто применяются дроссели с обмотками из фольги, позволяющие эффективно использовать пространство внутри сердечника.

Однако появление даже очень небольшого переменного тока может привести к возникновению в таких обмотках существенных потерь. Все это неприемлемо для большинства современных силовых систем.

Многие преобразователи постоянного тока требуют использования дросселей, способных работать в режиме пульсирующих токов с большой постоянной составляющей.

Будет интересно➡  Описание и принцип работы соленоидов

Даже при условии того, что переменная составляющая тока будет всегда намного меньше постоянной составляющей, сопротивление переменному току может стать на порядок больше сопротивления постоянному току. Проблема становится все более острой по мере того, как в современных установках повышается плотность тока и рабочая частота. К счастью, уже найдены способы снижения потерь по переменному току в медных проводниках.

Однако порошковые сердечники, как правило, характеризуются гораздо большими потерями на перемагничивание, чем ферритовые. Поэтому в силовых установках с высоким уровнем пульсаций тока иногда все же предпочитают использовать сердечники с зазором — из-за меньших потерь в них.

Или же применяют порошковые сердечники из материала со сравнительно высокой магнитной проницаемостью и зазором, что позволяет использовать преимущества и того, и другого подхода.

Но в этих случаях приходится решать проблемы, связанные с краевыми эффектами в зазорах, а также с потерями в медных проводниках, которые могут быть весьма значительными.

Дроссели разной мощности. Другая работа, проведенная West Coast Magnetics совместно с Thayer School of Engineering, позволила найти способы решения ряда проблем, связанных с применением обмоток из литцендрата в силовых дросселях с сердечниками с зазором.

Дело в том, что поле в зоне зазора бывает довольно сильным, что может привести к возникновению локальных потерь в части обмотки, расположенной близко к нему.

Было показано, что для заданной геометрии сердечника и каркаса существует оптимальное соотношение параметров обмотки из литцендрата и ее расположения внутри каркаса, позволяющее минимизировать потери в обмотке.

  • ширина и высота окна внутри сердечника;
  • ширина и высота окна каркаса дросселя;
  • амплитуда и частота пульсаций тока;
  • длина зазора;
  • коэффициент заполнения каркаса;
  • диаметр жил литцендрата;
  • длина витка;
  • количество витков.

Материал в тему: все о переменном конденсаторе.

Используя эти данные, программа рассчитывает напряженность поля внутри каркаса, а также идеальное расположение в нем обмотки.

Кроме того, программа определяет суммарные потери в обмотке и выбирает количество жил, требуемое для заполнения доступного внутреннего пространства.

Для примера рассмотрим дроссель индуктивностью 10,6 мкГн, работающий на частоте 250 кГц со среднеквадратичным значением пульсаций тока 4 А.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор).

Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

Будет интересно➡  Что такое импульсное реле

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

P=(14.7-3.3)*0.02=0.228 Вт

Ближайший по номиналу в большую сторону – резистор на 0.25 Вт. Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт.

Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими. Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток – выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления. Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление).

Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ.

Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Что такое дроссель?

Назначение дросселя

В цепях с переменным током с целью ограничения тока нагрузки используются дроссели, то есть индуктивные сопротивления. Такие устройства обеспечивают существенную экономию электроэнергии, не допускают перегрузку и чрезмерный нагрев.

Дроссель представляет собой один из видов катушек индуктивности, основным назначением которого является задержание влияния тока на конкретный диапазон частот. Причём резкое изменение силы тока в катушке невозможно, поскольку работает закон самоиндукции, вследствие чего создается дополнительное напряжение. Рассмотрим детально принцип действия, виды и назначение дросселей.

Назначение

Многих интересует, что такое дроссель и как он выглядит. Устройство выполнено в виде железного трансформатора, единственным отличием является наличие одной обмотки. Катушка накручена на сердечник из трансформаторной стали, при этом пластины разделены и не контактируют друг с другом с целью снижения вихревого тока.

Электронный дроссель характеризуется высоким уровнем индуктивности до 1Гн, катушка эффективно противодействует изменениям тока в электроцепи. При снижении силы тока катушка его поддерживает, а в случае резкого повышения катушка обеспечивает ограничение и предотвращение резкого скачка.

Рассматривая, для чего нужен дроссель, следует назвать такие цели:

  • снижение помех;
  • сглаживание пульсаций электрического тока;
  • накапливание энергии в магнитном поле;
  • отделение частей схемы по высокой частоте.

Зачем же нужен дроссель? Основным его назначением в электросхеме является задержка на себе тока конкретного частотного диапазона или накопление энергии  в магнитном поле.

Важность дросселя объясняется тем фактом, что люминесцентные газоразрядные лампы (к примеру, бытовые светильники, фонари на улицах) не функционируют без дросселя. Он выступает в роли ограничителя напряжения, подающегося на электроды газоразрядной лампы.

Также дроссельные устройства формируют пусковое напряжение, требуемое для создания электрического разряда между электродами. Благодаря этому обеспечивается включение люминесцентной лампы. Пусковое напряжение рассчитано всего на доли секунды. Таким образом, дроссель – это устройство, отвечающее за включение лампы и ее стабильное функционирование.

Дроссель — свойства, обозначение, виды, использование

Назначение дросселя

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник.

Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор.

Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала —  металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником  и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике.

Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток.

Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель —  это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока.

Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме.

Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов.

В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

    Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается.

Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы.

Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию.

В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы.

Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока.

Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания —  сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали.

Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко.

Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки.

Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое).

В обоих случаях дроссель нерабочий, все остальные значения —  признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.