Как проверить люминесцентную лампу мультиметром

Содержание

Как проверить люминесцентную лампу

Как проверить люминесцентную лампу мультиметром

Люминесцентное освещение набирает большую популярность. Оно более экономно в сравнении с привычными многим лампочками накаливания. Несмотря на меньший расход электрической энергии, они светят не менее качественно. Иногда люминесцентные светильники могут сломаться. Давайте разберемся:

  • как проверить люминесцентную лампу;
  • зачем необходим тестер или мультиметр;
  • можно ли вернуть лампе исправность.

Принцип действия ламп дневного света

Принцип работы люминесцентной лампы необычайно прост. Она включает в себя стеклянную трубку, которую заполняют благородным газом и ртутными парами. В ее края встраивают электроды.

При включении образуется заряд и возникает ультрафиолетовый свет. Внутреннюю часть колбы покрывают специальным слоем люминофора. Под воздействием УФ-излучения он начинает светиться. У исправной лампы тестер покажет наличие сопротивления.

Светильники часто оборудуются электронным балластом.

Использование таких режимов позволяетувеличить длительность работы светильников.Кроме того они имеют высокий коэффициент полезного действия.

Почему перегорают люминесцентные лампы

Стоит разобраться с вероятнымиполомками.

Очень часто причиной являетсяперегорание. Во время включения освещения в стеклянной колбе образуетсяэлектрическая дуга. При этом вольфрамовые электроды подвергаются сильномунагреванию. Под действием повышенной температуры нити со временем перегорают.

Чтобы увеличить длительность работы, нанить из вольфрама наносят активный щелочной металл. Это помогает понизить температуру,тем самым продлевая исправность электродов. При очень частой смене режимаработы защитный слой из металла разрушается. В такой ситуации вольфрамовые нитиначинают перегреваться и постепенно перегорают.

Кроме того, люминесцентная лампаперегорает при повреждении целостности стеклянного корпуса. В таком случае накраях трубки видно свечение вольфрамовой нити, а сам светильник не включается,поскольку воздух делает его работу невозможной. Тестер в данном измерениипокажет значение, равное нулю. Необходимо установить исправную лампочку.

Выявление неполадок и их устранение

Люминесцентная лампа имеет определенныесоставные элементы. Если вышел из строя один из них, то она перестает нормальноработать. Проблемы могут быть следующими:

  • отсутствие реакции на включение света;
  • мигание светильника перед полноценным включением;
  • постоянное мигание лампы;
  • мигание при включении режима горения;
  • гудение.

В случае возникновения любой изперечисленных неполадок следует разобраться в причине поломки и принятьсоответствующие меры. Помочь проверить, какая именно неисправность произошламожет тестер, индикаторная отвертка или мультиметр.

Схема работы режимов зажигания и свечения

Целостность спиралей электродов

Как проверитьлюминесцентную лампу мультиметром или тестером?

Мультиметр дает возможностьопределить сопротивление. Потребуется выбирать минимальный диапазон. На обеихсторонах колбы поочередно проверяют значение.

Если разорвана вольфрамовая нить,сопротивление будет равно нулю. Исправность нити подтверждается значением до 16Ом.

Тестер сопротивления также можетпомочь проверить исправность.Принцип измерения тестером такойже.

Для проверки можно воспользоваться индикаторной отверткой.

В случае, если одна нить осталось целой,вам все равно придется установить новую лампу. Нет способов починить разрывнити.

Неисправности в электронном балласте

Новые модели ламп оснащены балластом.Чтобы выяснить его исправность, тестер не потребуется. Вместо поломанногонеобходимо установить работающий балласт. Проблема именно в этом элементев том случае, если с новым балластом лампочка будет исправна.

Кроме того можно соединить контакты слампочкой накаливания. Исправность балласта подтверждается, если лампочка будетслегка светиться.

При желании возможно вернуть исправностьбалласта самостоятельно. Чаще всего причина кроется в поломке предохранителя —он сгорает от резкого перепада напряжения.

Для осуществления ремонта вампотребуется заменить предохранитель на точно такой же. Его можно снять с лампы,не работающей по другой причине или подобрать в строительном магазине.

Приподключении следует обязательно проверять полярность.

Схема подключения электронного балласта.

Также существует возможность поломкиконденсатора или транзистора. Их стоимость довольно небольшая, а процедуразамены не сложная.

Как проверить дроссель люминесцентного светильника

Вам стоит проверить исправностьдросселя, если наблюдается:

  • гудение;
  • потемнение по краям колбы;
  • перегрев светильника;
  • «змейки» при включении, словно разряды тока;
  • мигание освещения.

Чаще всего произошел обрыв обмотки дросселя либозамыкание витков.

Как проверитьлюминесцентную лампу на исправность в данном случае? Все довольнопросто.

Проверить наличие обрыва поможет тестерсопротивления или мультиметр. При обрыве значение, измеренное тестеромравно бесконечности.

При замыкании витков тестер покажет цифру, близкую к нулю. Если перегорел дроссель, то вы почувствуете неприятный запах горелого. Кроме того, внутри колбы могут появиться пятна.

Дроссель починить невозможно, поэтому потребуется установить новый. Выбирайте тот, мощность которого подходит к вашей лампе.

Сопротивление рабочего дросселя.

Как проверить стартер

При поломке стартера люминесцентнаялампа мигает, однако не загорается.

Чтобы проверить его исправность, стартервключают в цепь с лампочкой накаливания. В случае его исправности оназагорается и время от времени светится более ярко.

  • Схема проверки стартера

Как проверить емкость конденсатора тестером

Конденсатор не оказывает влияния наисправность. Он применяется для компенсации реактивной мощности дросселя. Приполомке конденсатора в два раза снижается коэффициент полезного действия. Из-заэтого увеличиваются затраты электрического тока.

Проверить емкость конденсатора можнотестером. При мощности светильника менее 40 кВт, можно отметить егоисправность, если тестер покажет значение около 4,5 мкФ. Если емкостьконденсатора меньше, то коэффициент полезного действия будет значительно ниже.При большей емкости свет будет постоянно мигать.

Несмотря на заявленную долговечность,лампочка может перегореть со временем. Иногда возможно вернуть лампеисправность. Для этого ее необходимо включить в специальную схему, из которойисключены стартер и дроссель. Это на какое-то время вернет ей работоспособность. Постепенно онаначнет гореть слабее. Для возобновления нормального свечения ее необходиморазвернуть, поменяв стороны подключения.

Необходимо помнить, что внутри колбы люминесцентной лампы находятся ртутные пары, которые, в случае попадания в воздух, имеют негативное воздействие на людей и окружающую среду. Именно поэтому их нельзя выбрасывать вместе с остальными отходами.

Неисправную лампу необходимо сдать на утилизацию в специальную контору. Юридические лица подписывают соглашения с компаниями, которые занимаются утилизацией.

Если такого договора нет, а в помещении используются люминесцентные лампы, то велика вероятность получения штрафа.

Ремонт люминесцентной лампы

Как проверить люминесцентную лампу: обнаружение и устранение неисправностей

Как проверить люминесцентную лампу мультиметром

Руслан Коновалов

Самым популярным источником искусственного света является люминесцентная лампа, которая потребляет в 5–7 раз меньше электроэнергии, чем лампа накаливания, а светит так же ярко. Более экономичные светодиоды с драйверами не смогли вытеснить лампы дневного света с рынка в силу своей высокой цены.

В течение срока использования ЛДС могут потерять работоспособность. Для устранения неполадок необходимо знать, как проверить люминесцентную лампу, в том числе – мультиметром. Об этом и пойдет речь.

Люминесцентная лампа

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник.

Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор.

Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Прозвонка мультиметром провода

1. Устанавливаем щупы в разъемы мультиметра:

— Красный щуп в гнездо V Ω mA

— Черный щуп в гнездо COM

2. Переводим колесо управления в режим прозвонки , который промаркирован соответствующим образом (значок диода и зуммера) На экране, при этом, должна высветится единица.

3. Проверяем правильность работы мультиметра , соединяя контакты щупов, закоротив их.

Если прибор работает правильно, вы услышите звук зуммера, а на экране высветится значение близкое к нулю.

4. Прозваниваем провод . Прикладывая щупы мультиметра к его жилам с двух сторон, как показано на изображении ниже. Если проводник целый, то вы сразу же услышите звуковой сигнал зуммера, а показания на экране будут близкие к «0», например 0,001.

Если же жила провода повреждена и один из её концов не имеет электрической связи со вторым, то показания мультиметра не изменятся, будет высвечиваться «1» и звукового сигнала не будет.

Как видите, всё довольно просто, и вы, если у вас есть под рукой мультиметр, можете сами попробывать прозвонить, что-нибудь. Только я еще раз напомню – не прозванивайте под напряжением, даже под небольшим.

Один из наглядных, часто встречающихся в быту, примеров проверки мультиметром проводки описан в следующей нашей статье — КАК ПРОЗВОНИТЬ РОЗЕТКУ. Это подробная, пошаговая инструкция диагностики неработающей розетки, обязательно изучите её, чтобы понять, как прозванивать электропроводку.

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике.

Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток.

Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока.

Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

Проверка исправности лампы дневного света и ее элементов

Как проверить люминесцентную лампу мультиметром

Лампы этого типа (ЛДС) относятся к классу люминесцентных приборов, использующихся для освещения. Они обладают рядом преимуществ по сравнению с лампами накаливания.

В то же время сама лампа является только составной частью осветительного прибора, используется в качестве излучателя и работает в составе схемы совместно с пускорегулирующей аппаратурой.

Прибор является далеко не безотказным в части возникающих при его эксплуатации неисправностей. Чтобы устранять возникающие неполадки, нужно уметь проверять лампу дневного света с тестером.

Почему перегорают люминесцентные лампы?

Сама лампа представляет собой стеклянную колбу различной геометрической формы, изготовленную из хрупкого кварцевого стекла. Ее внутренние стенки покрыты люминофором – материалом, способным преобразовывать спектр излучения ультрафиолетовых длин волн в видимую часть излучения – дневную. Кварц со временем теряет свою прозрачность.

Внешние механические воздействия на колбу могут привести к появлению в ее структуре микротрещин, следствием которых может быть попадание в герметичную полость воздуха.

Это приводит к перегоранию ЛДС.

Для свечения необходим тлеющий разряд внутри корпуса, который обеспечивают катоды устройства, представляющие собой вольфрамовые нити накаливания в виде разогреваемых электрическим током спиралей.

Они покрыты слоем щелочного металла для продления срока службы лампы, который при частом ее включении-выключении осыпается. Это, в свою очередь, приводит к перегреву катода и выходу его из строя. Со временем уменьшается эмиссия электрода или его способность испускать электроны со своей поверхности. Их количество уже не способно поддержать тлеющий разряд.

Как проверить дроссель люминесцентного светильника?

Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА).

На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.

После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.

Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.

Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта.

Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.

Как проверить стартер?

Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.

Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.

Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание.

Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск.

Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.

Как проверить емкость конденсатора тестером?

При обесточенной схеме и присоединении щупов тестера в режиме омметра к выводам стартера, к которым подключен конденсатор, он не должен прозваниваться и иметь бесконечно большое сопротивление.

Включение люминесцентной лампы без дросселя

Для решения этого вопроса собирается схема выпрямления напряжения с ее удвоением. Выводы каждой нити накала объединяются. Постоянного напряжения такой схемы хватит для создания тлеющего разряда внутри ЛДС.

Принцип работы

Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг.

В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора.

Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.

Строение люминесцентной лампы

Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.

Электромеханический дроссель

Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС.

Дроссель поддерживает равномерность разряда и корректирует ток при необходимости.

В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.

Схема люминесцентного светильника с ЭмПРА

Обратите внимание! Дроссель сдерживает ток в системе при включении, предотвращая перегрев спиральных нитей в трубке и их перегорание.

Предъявляемые к балластному сопротивлению требования:

  • минимальные потери мощности;
  • малые вес и размер;
  • отсутствие гула;
  • температура накала не выше 600 градусов по Цельсию.

Другой значимый элемент ЭмПРА – стартер тлеющего разряда.

Стартер тлеющего разряда

Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов.

Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение.

От этого люминофор на поверхности колбы светится в видимом для человека спектре.

Люминесцентная лампа с электромагнитным дросселем функционирует в двух режимах: зажигания и свечения.

Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.

Схема подключения электронного балласта

Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.

Электронный балласт

Важно! Лампа с электронным балластом функционирует в четырех режимах: включения, предварительного разогревания, зажигания и горения.

Целостность спиралей-электродов

Лампа не загорается. Проверяется при помощи мультиметра или индикатора на наличие сопротивления с мини-лампочкой.

Переключатель устанавливают на измерение сопротивления – минимальный диапазон, щупами прикасаются к штырькам сначала с одной, потом с другой стороны. Неисправная спираль покажет нулевое сопротивление (нить порвалась).

Целая нить покажет незначительное сопротивление – от 3 до 16 Ом. Если даже одна из спиралей покажет обрыв, лампа подлежит замене. Восстановить работоспособность с такой поломкой не получится.

Проверка целостности спиралей-электродов

Утилизация прибора

Люминесцентные лампы содержат пары ртути, вредные для живых организмов и окружающей среды. Утилизация осуществляется лицензированными организациями, с которыми юридические лица заключают договоры. Выбрасывать ЛДС с обычным мусором запрещено.

Ремонт люминесцентных ламп несложен, если следовать схемам и инструкциям, и позволяет продлить срок службы осветительного оборудования.

люминесцентные светильники

Как проверить люминесцентную лампу мультиметром

Как проверить люминесцентную лампу мультиметром

Люминесцентные лампы на разных этапах срока эксплуатации могут в разной степени снизить свою работоспособность.

Освещенность становится недостаточной, лампа гудит и мерцает, оказывая неблагоприятное воздействие на организм человека.

В связи с этим приходится решать задачу, как проверить люминесцентную лампу мультиметром, чтобы устранить выявленные недостатки и причины, вызвавшие их появление.

Как работают люминесцентные лампы

Люминесцентные лампы относятся к энергосберегающим, а их работу можно сравнить с различными типами газоразрядных источников света. Все элементы размещаются в стеклянной колбе, из которой предварительно откачан воздух. Взамен закачивается инертный газ с небольшим количеством ртути.

С противоположных сторон установлены спиральные электроды, выполняющие функцию нитей накаливания. Каждый из них соединяется с двумя контактными штырьками, расположенными на пластинах из диэлектрического материала. Внутренняя сторона стеклянной трубки покрыта люминофором. Конструкция всех ламп одинаковая, независимо от размеров колбы.

Сами лампы вставляются в специальные светильники.

Для включения осветительного прибора применяется электромагнитная (ЭмПРА) или электронная (ЭПРА) пускорегулирующая аппаратура. Основным элементом ЭмПРА является дроссель, выполняющий функцию балластного сопротивления.

Конструктивно он представляет собой катушку индуктивности, включенную последовательно в цепь с лампой дневного света.

Дроссель следит за равномерностью разряда и поддерживает его на одном уровне. В случае необходимости осуществляется корректировка тока. В момент включения происходит сдерживание пускового тока до полного разогрева спиральных нитей. За счет этого они не перегреваются и не перегорают.

Далее за счет самоиндукции в дросселе возникает напряжение, от которого и загорается лампа.

Балластное сопротивление должно работать с минимальными потерями мощности, обладать небольшими размерами и весом.

Важным требованием является бесшумная работа и величина температуры накаливания, не превышающая 600С.

Еще одной деталью системы ЭмПРА, играющей важную роль, служит стартер тлеющего разряда. При включении лампы в нем появляется разряд тока, обеспечивающего накал биметаллических контактов. После их замыкания ток в цепи возрастает, и электроды начинают разогреваться.

Через определенное время контакты стартера остывают и цепь размыкается. В этот момент из дросселя на электроды подается высоковольтный импульс, что приводит к появлению между ними дугового разряда.

Под его воздействием появляется ультрафиолетовое излучение, а люминофор, нанесенный на стекло, начинает светиться в видимом спектре, то есть лампа загорится.

Ремонт настольной лампы дневного света

Люминесцентные светильники нового поколения оборудуются ЭПРА – электронной пускорегулирующей аппаратурой (рис. 3). Срок службы и коэффициент полезного действия таких ламп существенно увеличился.

В режиме свечения они могут работать даже с перегоревшей спиралью, в отличие от традиционных ЭмПРА. Кроме того, в современных схемах отсутствуют стартеры.

Балласты электронного типа считаются дорогими и достаточно сложными в ремонте, поэтому в большинстве случаев они полностью заменяются новыми изделиями.

Основные причины выхода из строя

Все люминесцентные светильники изготавливаются в виде стеклянной колбы различной конфигурации. С внутренней стороны она покрыта люминофором, преобразующим волны ультрафиолетового спектра в видимый дневной свет. В процессе эксплуатации хрупкое кварцевое стекло становится менее прозрачным и теряет свои качества.

Из-за внешних механических воздействий на поверхности колбы и в ее внутренней структуре образуются микротрещины, через которые внутрь герметичной полости может попасть воздух. На концах трубки возникает оранжевое свечение, а сам прибор перестает работать. Это одна из основных причин появления перегоревших ламп дневного света.

Процесс свечения обеспечивается за счет тлеющего разряда внутри колбы. Эти разряды создаются на катодах лампы, изготовленных в виде спиральных вольфрамовых нитей накаливания, разогреваемых действием электрического тока.

Для увеличения срока службы и стабилизации тлеющего разряда они покрываются активным щелочным металлом, который со временем осыпается при постоянных включениях и выключениях. В результате, катод перегревается и быстро выходит из строя.

Его эмиссия заметно снижается, то есть уменьшается количество электронов, испускаемых с поверхности. Они уже не могут поддерживать рабочий уровень тлеющего разряда.

Иногда сбои в работе приводят к появлению электрической дуги и сильному нагреву вольфрамовых электродов. Под действием высокой температуры наступает перегорание и разрушение нитей. Как следствие, на стекле становится заметен потемневший люминофор. Это означает, что перегорела люминесцентная лампа.

Неполадки ламп дневного света внешне представляют собой невозможность включения, кратковременные мерцания перед включением, длительное мерцание без последующего включения. Неисправный светильник начинает гудеть и мерцать при нормальном рабочем режиме или просто не загорается.

Нередко работоспособность нарушается при некачественном взаимодействии между штырьками лампы и контактами патрона. Это происходит из-за постепенного износа и окисления держателей. Для очистки рекомендуется использовать мелкую наждачную шкурку, ластик или спиртосодержащую жидкость.

При необходимости контактные пластинки подгибаются или полностью меняются.

Как сделать люстру с пультом из обычной люстры

Необходимо учесть, что лампа дневного света перестает нормально работать и не включается при температуре воздуха минус 50С и ниже, а также при перепадах напряжения свыше 7%.

Подобные сбои в работе оказывают негативное влияние на здоровье человека, в первую очередь, на его зрение. Поэтому рекомендуется провести диагностику, выявить неисправность и по возможности отремонтировать светильник.

Этот процесс можно ускорить за счет использования заведомо исправной лампы. Если она загорится, значит светильник исправен.

Проверка нитей накаливания (спиралей-электродов)

Одной из причин неисправности становятся электроды, выполняющие функцию нитей накаливания. Они помещаются внутрь трубки, наполненной газом, а их концы припаяны к контактным ножкам цоколя, выходящим наружу. Проверка целостности спиралей проводится с помощью мультиметра или тестера, подключаемого к выводам, расположенным на одном из концов стеклянной колбы.

Для проведения замеров на мультиметре устанавливается режим измерения сопротивления с минимальным пределом или режим прозвонки. Проверка спиралей осуществляется поочередно, на обоих концах.

Если спирали находятся в исправном состоянии, загорится контрольная лампа, а зуммер будет производить звуковые сигналы. На дисплее мультиметра высветится сопротивление в пределах 5-10 Ом.

В случае отсутствия звуковых и световых сигналов и наличия сопротивления со знаком бесконечности, можно предположить обрыв одной из спиралей, при котором лампа уже не будет работать и должна быть заменена.

Тестирование дросселя

В том случае, когда предыдущая проверка не дала результата, проверяется дроссель, относящийся к наиболее устойчивым элементам лампы. Он ломается намного реже остальных деталей, однако нельзя полностью исключить его возможную неисправность.

Дроссель люминесцентной лампы по своей сути является обычной катушкой индуктивности, внутри которой находится ферромагнитный сердечник с высокой магнитной проницаемостью. Он входит в состав ЭмПРА и при включении лампы так же как и стартер участвует в разогреве катодов и создании высоковольтного импульса.

За счет ЭДС самоиндукции внутри колбы создается тлеющий разряд.

После отключения стартера, дроссель за счет своего индуктивного сопротивления поддерживает ток разряда на нужном уровне, обеспечивающем стабильную ионизацию смеси газа и ртути.

За счет индуктивности и сопротивления дроссель защищает электроды от перегрева и перегорания под действием переменного тока.

Как из 220 сделать 380 вольт

Основными неисправностями данного элемента может стать обрыв или перегорание обмотки, а также нарушения межвитковой изоляции. Обе поломки выявляются с помощью мультиметра, подключенного к выводам дросселя и настроенного на замер сопротивления.

Если на табло высвечивается знак бесконечности, следовательно обмотка оборвана или сгорела. Предвестником перегорания чаще всего становится неприятный запах, появляющийся во время работы дросселя.

Если же сопротивление имеет малую величину, то в большинстве случаев оказывается нарушенной изоляция проводников, что в свою очередь приводит к межвитковому замыканию или замыканию обмотки с сердечником.

Проверка работоспособности стартера

Наряду с другими элементами люминесцентной лампы, проверяется исправность стартера. В любом случае корпус светильника следует вскрыть и провести визуальный осмотр внутреннего пространства. Если обнаружены почернения, то это прямо указывает на имеющуюся неисправность. Поэтому придется проверить люминесцентную лампу, в том числе и сам стартер.

https://www.youtube.com/watch?v=S-onZNw9tcMu0026t=8s

Дело в том, что этот компонент наиболее часто подвержен поломкам. Его элементы испытывают постоянные механические нагрузки в условиях многократных перепадов температур. После того как корпус стартера оказывается разобран следует провести осмотр внутренней схемы.

Неисправный конденсатор имеет вздутия или бывает полностью разрушен из-за скачков сетевого напряжения. При отсутствии внешних повреждений конденсатор следует проверить мультиметром.

Тестирование конденсатора выполняется на его выводах в режиме омметра, с выставлением на шкале максимального предела замеров сопротивления.

При нормальном состоянии данного элемента на табло мультиметра будет показан знак бесконечности. Если же сопротивление составляет 2 Мом и ниже, то возможно недопустимое значение тока утечки в конденсаторе.

В домашних условиях не всегда удается точно прозвонить и проверить состояние стартера, для этого рекомендуется воспользоваться исправным светильником. Стартер, оказавшийся неисправным, подлежит замене.

Проверить исправность стартера возможно не только тестером. Для этого стартер аккуратно извлекается из гнезда, без нарушений других элементов схемы. После этого включается питание и контакты в гнезде стартера коротко замыкаются исправным, хорошо изолированным инструментом. Если все остальные детали схемы исправны, то лампа должна загореться.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.