Грунтовый тепловой насос

Содержание

Геотермальные тепловые насосы

Грунтовый тепловой насос

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 3

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 4

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 5

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 6

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 7

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 8

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 9

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 10

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 11

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 12

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Page 13

Геотермальные тепловые насосы SILA типа земля-вода предназначены для использования в системах отопления, горячего водоснабжения и системах охлаждения.

Тепловой насос “выкачивает” тепловую энергию из грунта и направляет ее потребителю, в систему отопления и горячего водоснабжения. Использование теплового насоса позволяет экономить до 85 % расходов на отопление, горячее водоснабжение и охлаждение.

Основные компоненты теплового насоса SILA произведены в Японии и Италии, что обеспечивает его максимальную надежность и эффективность.
[attention type=green]
[attention type=yellow]
[attention type=red]
[attention type=green]
За счет чего экономия?
[/attention]
[/attention]
[/attention]
[/attention]

Тепловой насос потребляет электричество, которое расходуется не на нагрев теплоносителя, а на работу компрессора по сжатию фреона – концентрацию тепловой энергии, полученной из уличного воздуха. При этом расход электричества в разы меньше полученной тепловой энергии.

Грунтовый тепловой насос: принцип работы и преимущества эксплуатации

Грунтовый тепловой насос

Грунтовый — геотермальный тепловой насос

Грунтовый, или как его еще называют, геотермальный тепловой насос извлекает энергию из земли либо из воды для отопления дома зимой и его охлаждения в летнее время.

Тепло извлекается из земли посредством жидкости, например грунтовой воды или антифриза, и доставляется во внутренние помещения дома по трубопроводам и воздуховодам.

Летом, когда требуется охлаждение, идет обратный процесс: тепло из дома транспортируется в грунт с использованием той же технологии.

Грунтовые насос DX-серии используют хладагент вместо антифриза и воды в качестве транспортирующей жидкости. Данный тип насосов может в равной степени работать через систему воздуховодов или радиаторов. Различные модификации могут быть оснащены только функцией отопления, либо работать также и для охлаждения.

Принцип действия грунтового теплового насоса

Грунтовый тепловой насос состоит из двух частей: контура подземных трубопроводов снаружи здания и блока теплового насоса в помещении.

В отличие от воздушного теплового насоса, у которого в доме размещается только теплообменник (и иногда компрессор), грунтовый насос целиком находится в помещении.

Наружные трубопроводы могут быть спроектированы как закрытая (замкнутая) либо открытая система.

Открытая система использует тепловые ресурсы, содержащиеся в подземных грунтовых водах. При этом вода из скважины идет напрямую к теплообменнику, где из нее извлекается тепло. Прошедшая теплообменник вода сливается либо в какой-нибудь водоем на поверхности: пруд или протоку, либо возвращается под землю через другую скважину.

Закрытая система вытягивает тепло из земли посредство множества замкнутых петель трубопроводов, зарытых в грунт. Антифриз (или хладагент в случае грунтовых насосов DX-серии), охлажденный рефрижераторной системой теплового насоса на пару градусов ниже температуры почвы, циркулирует по трубопроводам и вытягивает тепло из грунта.

Рабочий цикл в режиме отопления

Грунтовая вода, антифризная смесь или хладагент, прошедшие подземную трубопроводную систему и собравшие тепло из земли, поступают в блок теплового насоса внутри дома. Далее теплоноситель поступает к блоку теплообменника.

В случае грунтовых насосов DX-серии теплоноситель поступает прямо к компрессору, минуя теплообменник. Тепло нагревает хладагент до точки кипения, превращая его в низкотемпературный пар.

В открытой системе освобожденная от тепла вода далее сбрасывается в ближайший водоем или скважину.

В замкнутой системе антифризная смесь или хладагент выталкивается обратно в подземные трубопроводы, чтобы дальше собирать тепло. Обратный клапан направляет нагретый пар в компрессор, где он подвергается сжатию, уменьшается в объеме и нагревается.

Наконец, обратный клапан выталкивает нагретый газ в блок конденсатора, откуда нагретый воздух поступает по воздуховодам во внутренние помещения дома.

Отдав свое тепло, хладагент проходит через расширитель, где его давление и температура снижаются еще сильнее, после чего он снова направляется к началу цикла.

Рабочий цикл в режиме охлаждения

Цикл охлаждения, как правило, повторяет алгоритм работы в режиме отопления с точностью до наоборот.

Посредством работы обратного клапана хладагент идет в обратном направлении: он собирает тепло из воздуха в помещении и выталкивает его наружу, в случае грунтовых насосов DX-серии – в воду или антифризную смесь.

Тепло возвращается в наружный водоем или скважину при открытой системе либо в сеть подземных трубопроводов при замкнутой системе. При выработке избыточного тепла его часть может направляться для обеспечения потребностей горячего водоснабжения.

В отличие от воздушных тепловых насосов грунтовые модели не нуждаются в режиме разморозки. Ведь подземные температуры значительно меньше подвержены изменениям, чем температура воздуха, тем более что основной блок грунтового насоса размещается в помещении, таким образом, проблемы обмерзания практически не возникает.

Составные части системы грунтового насоса

Как показано на рис. 1, система грунтового насоса состоит из трех базовых компонентов: основной блок, внутренняя система воздуховодов и наружная система трубопроводов (при закрытой системе) либо скважина / водоем (при открытой системе).

Грунтовые насосы могут иметь различия в конструктивной системе. В комбинированных моделях вентилятор, компрессор, теплообменник и конденсаторные трубопроводы размещаются в одном блоке оборудования.

Другие модификации спроектированы в конфигурации «сплит-систем» (отдельных блоков), позволяющих встраивать их в имеющиеся системы отопления.

Рис. 1 – Основные элементы системы грунтового теплового насоса

Показатели эффективности работы грунтового теплового насоса

Как и в случае воздушных тепловых насосов, их грунтовые аналоги имеют множество модификаций, различающихся по техническим характеристикам и параметрам эффективности.

Насосы типа Земля-Вода, работающие в рамках открытых систем на грунтовой воде, имеют коэффициент эффективности в режиме отопления в диапазоне от 3,6 до 5,2, в режиме охлаждения – от 16,2 до 31,1 соответственно (см. рис. 2).

Рис. 2 – Показатели эффективности грунтового теплового насоса (открытая система)

Грунтовые тепловые насосы замкнутого типа, работающие от подземных трубопроводов, имеют коэффициент эффективности при отоплении 3,1-4,9, при охлаждении – 13,4-25,8 (см. рис. 3).

Рис. 3 – Показатели эффективности грунтового теплового насоса (закрытая система)

Представленный на рисунках диапазон значений демонстрирует производительность типового ассортимента моделей грунтовых тепловых насосов. Обычно чем выше производительность, тем выше цена оборудования и соответственно стоимость сопутствующих затрат на монтаж, пусконаладку, техническое обслуживание.

Чтобы иметь представление о полной стоимости покупки и ввода в эксплуатацию грунтового теплового насоса, нужно составить типовую смету затрат, адаптированную под конкретную модель оборудования.

Не стоит забывать о том, что энергопотребление у различных типов грунтовых насосов может значительно отличаться: ведь оно зависит не только от мощности и производительности, но и от технологии энергоэффективности, в соответствии с которой спроектирован тот или иной тип машин.

В отличие от температуры воздуха температура земли остается более-менее постоянной, в результате чего производительность грунтового насоса меняется незначительно в зимний период. Стабильная производительность оборудования дает возможность подобрать модель грунтового насоса под потребности конкретного домохозяйства в отоплении и горячем водоснабжении.

Допустим, в случае с воздушным тепловым насосом будет совершенно нецелесообразным полностью полагаться на него в деле отопления, так как его производительность слишком зависима от погодных условий и, в частности, от уличной температуры. Грунтовый тепловой насос, как уже было сказано, подвержен температурным колебаниям значительно меньше, однако и он не в состоянии в одиночку справляться с отопительной нагрузкой.

Идеальным будет вариант, когда грунтовый насос спроектирован для обеспечения 60-70% от общей тепловой нагрузки (совокупной потребности по отоплению и горячему водоснабжению). В самые холодные зимние дни мощности грунтового насоса может не хватить, так что лучше иметь под рукой резервный источник тепла.

Комбинированная работа этих двух нагревательных систем позволит полностью покрыть потребности домохозяйства в ГВС и отоплении.

Системы грунтовых насосов переменной мощности c двухступенчатым компрессом способны удовлетворять все потребности в охлаждении и частично в отоплении на малой мощности, и отапливать дом в холодные зимние месяцы – на полной мощности.

На рынке России представлен широкий модельный грунтовых тепловых насосов в диапазоне по мощности от 7 кВт до 35 кВт, многие из которых комплектуются блоком горячего водоснабжения.

Земляной тепловой насос (геотермальный тепловой насос) что это такое?

Грунтовый тепловой насос

страница » Земляной тепловой насос (геотермальный тепловой насос) что это такое?

Геотермальный земляной тепловой насос, по сути, представляет собой систему центрального отопления земли. Энергетический механизм земного грунта поддерживает постоянное использование как накопитель (источник) тепла.

Конструктивно система позволяет использовать умеренный диапазон температур грунта. За счёт этого повышается эффективность и снижаются эксплуатационные расходы традиционных систем отопления (охлаждения).

Допустимо объединение земляного теплового насоса с установками сбора солнечной энергии — строительство систем высокой эффективности.

Технология геообмена для получения энергии

Земляной тепловой насос в научных кругах больше известен под другими названиями, в частности:

  • геообмен (Geoexchange),
  • грунтовой теплообменник,
  • земная энергетическая система.

Инженеры, однако, чаще пользуются термином «земляные тепловые насосы», дабы избежать путаницы с традиционной геотермальной энергией, где используется высокотемпературный источник тепла для выработки электроэнергии.

Земляные тепловые насосы действуют по принципу сбора тепла, получаемого от Солнца и поглощаемого поверхностью Земли. Температура грунта ниже 6 метров от границы поверхности равна среднегодовой температуре воздуха для конкретной широты земного шара.

ТЕПЛОВОЙ

Структурная схема установки: 1 – природный земляной теплообменник на трубном петлевом замкнутом контуре; 2 (3) – тепловой насос; 4 – ресивер с горячей водой; 5 – тепло, направляемое в радиаторы или в систему тёплого пола; 6 – использование водного ресурса для хозяйственных нужд

В зависимости от параметра широты, температура под верхним слоем Земли поддерживается на постоянном уровне в диапазоне 10-16°C. Подобно холодильнику или кондиционеру, систему допустимо использовать в качестве теплового насоса для принудительной передачи тепла от грунта.

Тепловые насосы способны передавать энергию от холодной к тёплой области в противовес естественному направлению потока. Либо эти же устройства способны усиливать естественный поток тепла, направленный от теплой среды к холодной.

Общая информация по земляным тепловым насосам

На первый взгляд устройство земляного теплового насоса выглядит достаточно сложным, но фактически это относительно простая элементная база. Подобного рода установки содержат ряд подземных труб, предназначенных извлекать солнечную энергию.

Полученную солнечную энергию, в свою очередь, достаточно просто преобразовать в тепловую энергию с последующим использованием для нужд домашнего хозяйства.

ИНВЕРТНЫЙ

Возможные конфигурации замкнутого типа на земляной тепловой насос: 1 – горизонтальное трубное поле; 2 – вертикальное трубное поле; 3 – трубное поле в области водоёма

Существуют два основных типичных исполнения земляного теплового насоса:

  1. Вертикальный.
  2. Горизонтальный.

Рассмотрим подробнее обе конфигурации для лучшего понимания. Однако также стоит отметить – используются два типа трубного контурного исполнения – замкнутое и разомкнутое. Второй вариант считается редко применяемым.

Земляной тепловой насос — вертикальная конфигурация

Этот вариант исполнения предполагает формирование поля труб, образующих замкнутый контур. При этом трубы контура проходят в земле вертикально.

Для выполнения вертикального монтажа трубного поля в грунте бурят скважину глубиной 15–125 м (может использоваться свайный фундамент здания). Циркулирующий по трубам теплоноситель поглощает (отводит) тепло от грунта или в грунт.

Трубные пары, помещаемые в скважину, соединяются U-образными поперечинами в нижней части или состоят из двух трубок полиэтилена высокой плотности малого диаметра, термически сплавленных для образования U-образного донного изгиба.

ПЛАСТИНЧАТЫЙ

Реальный пример скважины под сооружение вертикального земляного теплового насоса. В зависимости от мощности системы таких скважин может потребоваться несколько

Пространство между стенкой скважины и U-образными трубами обычно полностью заполнено цементирующим веществом (допускается частичное заполнение грунтовыми водами).

Скважина, как правило, заполняется бентонитовым раствором, благодаря чему обеспечивается тепловая связь с грунтом, улучшается теплопередача.

Улучшить теплопередачу помогают термически эффективные растворы. Трубные поля вертикальной петлёй обычно используются, когда площадь земли ограничена. Скважины бурят удалёнными на 5–6 м одна от другой.

Параметр глубины зависит от характеристик грунта и обслуживаемого здания. Так, отдельно взятому дому, потребляющему 10 кВт тепловой мощности, требуется три скважины глубиной 80-110 м.

Земляной тепловой насос — горизонтальная конфигурация

Земляной тепловой насос на основе горизонтального трубного поля, соответственно предполагает создание горизонтально расположенного в земле замкнутого контура.

Для такой конфигурации необходимо рыть длинную горизонтальную траншею глубже уровня промерзания грунта. Внутри такой траншеи размещаются горизонтально U-образные или петлевые трубы.

Рытьё неглубоких горизонтальных петлевых полей земляного теплового насоса оценивается примерно вполовину стоимости относительно варианта вертикальной конфигурации.

Поэтому горизонтальный вариант устройства земляного теплового насоса считается наиболее распространённой схемой, используемой в местах с достаточным количеством свободной земли.

ВОЗДУШНЫЙ

Практическое решение по сооружению горизонтального земляного трубного поля теплового насоса. Это одна из наиболее перспективных конструкций для частных хозяйств

Для конструкции дома, потребляющего 10 кВт тепловой мощности, требуются три траншеи, длиной 120-180 м с петлями из полиэтиленовых труб диаметром 20-32 мм. Глубина траншей должна составлять 1-2 м.

Следует отметить: глубина погружения трубного серпантина оказывает существенное влияние на потребление энергии земляным тепловым насосом. При этом отмечаются два противоположных варианта влияния:

  1. Мелкие петли имеют тенденцию косвенно поглощать больше тепла от солнца, что полезно, особенно когда земля долго остаётся холодной после зимы.
  2. Неглубоко положенные петли также намного легче охлаждаются в результате изменений погоды, особенно в течение долгих холодных зим, когда пики потребности в отоплении достигают максимума.

Зачастую второй эффект более выразителен, чем первый, что приводит к более высоким затратам на эксплуатацию контуров, погруженных на небольшую глубину.

Земляной тепловой насос — другие возможные конфигурации

Альтернативой горизонтальному размещению земляного теплового насоса может служить прокладывание системы горизонтально-направленным бурением.

Методика позволяет монтировать трубопроводы под землёй городских дворов, проездов, садов и другой инфраструктуры. При этом инфраструктурные сооружения не нарушаются, а затраты на работы остаются на среднем уровне, если сравнивать с горизонтальным и вертикальным способом устройства.

Система горизонтально-направленного бурения также отличается от горизонтальной и вертикальной конфигураций, поскольку петлевое поле состоит из одной центральной камеры, чем ещё больше сокращается рабочее пространство объекта.

Горизонтально-направленное бурение зачастую применяется уже после того, как подлежащий оснащению земляным тепловым насосом объект был построен.

ЭЛЕКТРИЧЕСКИЙ

Неординарный, достаточно «экзотический» вариант – использование водоёма. Однако такой проект земляного (водяного) теплового насоса также вполне может использоваться на практике

Существует также довольно необычный вариант конфигурации системы, когда тепло извлекается при помощи трубного поля, размещаемого на дне водоёмов (озёр, прудов), где масса воды достаточно велика.

Однако такого рода система относится к узкоспециализированным сооружениям и требует тщательного расчёта конструкции. Обычно расчёт проводится производителем земляного специализированного теплового насоса.

Как работает земляной тепловой насос и сколько стоит?

Принцип действия обычно основан на смеси воды и антифриза, которая закачивается в область земляного массива.

Благодаря этой смеси поглощается солнечная энергия, запасённая в массиве земле. Тепло извлекается посредством использования технологий сжатия и расширения  и в качестве энергетического потенциала может применяться для отопления частного дома.

Объёмная доля собранного теплового ресурса напрямую зависит от производительности (количества труб, длины и глубины вырытых траншей), а также от характеристик почвы.

Практика показывает, что глинистая почва способна удерживать больше тепла, чем песчаная. Перед проектированием и сооружением земляного теплового насоса, как правило, выполняется тщательное изучение состояния грунта.

Согласно некоторым оценкам специалистов по энергосбережению, стоимость установки типовой системы земляного теплового насоса в частном доме на три-четыре спальни, составит около 800 000 рублей.

Между тем общепринятая «бюджетная» величина составляет примерно 1 млн. руб. за 1 кВт мощности. Для частного дома площадью 400 м² на четыре спальни, построенного в соответствии стандартам строительных норм, потребуется тепловой насос мощностью не менее 8 кВт.

Непосредственно тепловой насос оценивается в 500–600 тыс. руб. Общий баланс земляной системы включает ещё стоимость сооружения в целом. Сумма под инсталляцию нередко значительно варьируется в зависимости от условий местности.

При помощи информации: Wikipedia ; Homebuilding

Все про геотермальный тепловой насос: откуда берет энергию и чем отличаются между собой?

Грунтовый тепловой насос

Геотермальный тепловой насос – вид теплового насоса, который в качестве источника энергии использует тепло земли. Из всех насосов у него самый высокий и стабильный КПД, не зависящий от уличной температуры. Поэтому, его можно использовать в качестве альтернативы газовому котлу.

Далее в статье разберем принцип геотермального отопления: как работает грунтовый тепловой насос вода-вода, из чего состоит и когда его лучше применять.

Почему грунт эффективен

Любой тепловой насос в первую очередь использует электроэнергию, которую в дальнейшем посредством природного тепла (из земли, воды, воздуха и т.п.) преобразовывает в тепло. Соотношение потребленной электроэнергии к полученному теплу называется коэффициентом преобразования — СОР.

Подробнее см. в статьях: принцип работы теплового насоса и отопление тепловым насосом.

Геотермальное отопление одно из самых эффективных, так как у земляных тепловых насосов очень высокий СОР (КПД) = 1:3,5-5, который не зависит от уличной температуры или времени года. На каждый вложенный 1кВт электрической энергии он выдает от 3,5-5кВт тепловой.

Это происходит потому, что грунт — хороший и надежный источник тепла: он накапливает в себе солнечную энергию и его температура стабильна в течение года. Это позволяет грунтовому тепловому насосу постоянно извлекать из земли достаточное количество тепла необходимое для покрытия его отопительной мощности.

Устройство грунтового теплового насоса

Он состоит из двух основных блоков:

  1. Внутренний – основной блок, который устанавливается в котельной и преобразовывает тепло получаемое из земли;
  2. Внешний блок – трубы, закопанные в землю. Внутри них постоянно циркулирует теплоноситель, который отбирает тепло у грунта . Укладка трубы может осуществляться горизонтально и вертикально.

Поэтому геотермальный насос также называют вода-вода или вода-воздух. Первое слово означает в каком виде насос получает тепло — в жидком, а второе — во что он её преобразовывает.

«Вода-вода» означает, что насос получает тепловую энергию посредством жидкости и преобразовывает её в также в жидкость (греет воду в системе отопления).

Если же насос типа вода-воздух, это значит, что он греет воздух в помещении через фанкойлы (внутренние блоки кондиционеров).

Горизонтальный коллектор

Трубы укладываются параллельно земле в специально подготовленных траншеях ниже уровня промерзания грунта  – 0,8-1,5 метра. Расстояние между траншеями должно быть не менее 1,5 метров, а ширина самой траншеи – 50-70см. Это делается с целью предотвратить переохлаждение грунта. Иначе геотермальный тепловой насос не сможет получать достаточное количество энергии.

Длина труб и площадь траншеи зависят от:

  • Мощности теплового насоса – чем выше мощность насоса, тем больше должна быть площадь участка земли
  • Теплоотдачи грунта. Все грунты имеют разную теплоотдачу. В среднем для горизонтальной укладке труб теплоотдача грунта равна 15-35Вт/м2.

Главный недостаток грунтового коллектора – требуется большая территория для укладки трубы. Причем, эту территорию нельзя будет использовать под застройку или посадку деревьев.

Вертикальный зонд

В скважину глубиной от 10 до 100м опускается специальная U-образная труба. Такая укладка обеспечивает более высокую эффективность работы грунтового теплового насоса — 1:4-5 за счет того, что температура грунта на глубине всегда больше, чем у поверхности.

Для вертикального зонда требуется намного меньше места, чем для горизонтального коллектора. Расстояние между двумя соседними скважинами должно быть не менее 5-6 метров и поэтому такой способ монтажа может использоваться на маленьких участках. С другой стороны бурение скважины стоит дороже рытья траншеи и часто требует специальных разрешений (при бурении больше определенной глубины).

Сравнение требуемой площади земли для коллектора и зонда

Проведем простой расчет. Предположим, что нужно установить геотермальный тепловой насос мощностью 10кВт. Средняя тепловая мощность грунта для горизонтального коллектора – 25Вт/м2, для скважины – 50Вт/м глубины скважины.

  • Грунтовый коллектор: 10 000/25= 400м2 требуемая площадь отбора тепла. Важно учесть, что на каждый 1м2 площади отбора должно быть уложено 1,4-2 погонных метра трубы. Поэтому необходимая длина трубы равняется 400×1,43=572м. То есть, чтобы получить необходимую тепловую мощность в землю нужно закопать 572 метра трубы. Это могут быть 6 равных веток длиной по 95м с шириной траншеи 50см. Для этого понадобится участок земли размером 95×12м и площадью 1140м2.
  • Вертикальный зонд: 10 000/50 = 200м требуемая длина трубы. То есть, в землю достаточно уложить 2 ветки трубы длиной по 100м с расстоянием между собой 5-6 метров.

Для визуального сравнения ниже приведено изображение участков с сохранением пропорций.

Когда оправдано геотермальное отопление

Грунтовый тепловой насос вода-вода позволяет экономить газ. Но важно не забывать и о сроке окупаемости, который может быть очень и очень большим. Если же выбирать между газовым котлом и насосом, то вот когда наиболее целесообразно будет использовать последний:

  1. Участок не подключен к газу. Тогда лучше заплатить за монтаж теплового насоса, чем газификацию участка (если такая возможность вообще есть).
  2. У вас есть свободные деньги, которые вы хотите удачно вложить и сохранить. Грунтовый тепловой насос вода вода послужит своеобразной инвестицией.
  3. Вы получили насос бесплатно и есть желающие за бесценок выполнить земляные работы

Ставить насос ради экономии газа с учетом текущих тарифов и стоимости оборудования нецелесообразно. Для этих целей следует рассмотреть такие варианты как солнечные коллектора, камин с водяным контуром или предпринять ряд энергосберегающих мер.

Выводы

особенность грунтового теплового насоса – высокая эффективность независимо от уличной температуры и времени суток. Он может постоянно обеспечивать здание тепло и является полноценной заменой газовому котлу.

Существует 2 способа укладки трубы в землю: горизонтальный и вертикальный.

  • Горизонтальный коллектор дешевле и проще в монтаже, однако он требует большую свободную территорию для укладки трубы;
  • Вертикальный зонд занимает гораздо меньше места на участке и работает с большим КПД.  Однако из-за высокой стоимости, его установка может не окупиться.

Геотермальный тепловой насос лучше всего использовать если участок не подключен к газу. Во всех остальных случаях, затраты на покупку и установку всего необходимого оборудования могут не окупиться и экономический эффект не будет достигнут.

Все про геотермальный тепловой насос: откуда берет энергию и чем отличаются между собой?

(10 , оценка: 3,40 из 5)

Тепловой насос земля-вода: расчет отопления, выбор, цены и монтаж

Грунтовый тепловой насос

Из всех разновидностей тепловых насосов, существующих на сегодняшний день, системы «грунт-вода» имеют наибольшую эффективность.

При этом, они самые дорогостоящие, требуют больших трудозатрат для создания, что существенно ограничивает популярность и распространение этих комплектов. Рассмотрим устройство систем «грунт-вода», их возможности и особенности эксплуатации.

 Работу теплового насоса «вода-вода» мы рассмотрели в этой статье, «воздух-вода» в этой и «воздух-воздух» здесь.

Исследования ученых показали, что на глубине около 1,5-2 м почва практически никогда не изменяет свою температуру, составляющую от 5°С, до 10°С и стабильно находящуюся в этих пределах. Это позволяет использовать ее в качестве низкопотенциального источника тепловой энергии для ТН.

Система, созданная на базе такого источника, не зависит от внешних факторов, в частности — от изменения климатических или погодных условий, понижения температуры и т. п.

Единственная сложность — способ отбора тепловой энергии.

Для этого используется обычная вода или (чаще) другой теплоноситель (антифриз, этиленгликоль), циркулирующий в трубах, погруженных тем или иным способом в грунт.

Основная проблема заключается в том, что для набора нужной температуры теплоноситель должен довольно длительное время находиться под землей, так как на выходе из испарителя он сильно охлаждается.

Вопрос решается увеличением протяженности трубопровода, чтобы за время транспортировки потока он успевал нагреться до температуры грунта.

Стабильность температуры почвы имеет очень положительное значение, так как появляется возможность отказаться от регулировки скорости циркуляции теплоносителя, настроив ее один раз при запуске системы в эксплуатацию.

Как работают тепловые насосы «земля-вода»

Конструкция ТН типа «грунт-вода» основана на обычном для подобного оборудования принципе действия холодильника (или, говоря более научным языком, на использовании цикла Карно).

Нагрев теплоносителя (воды) происходит благодаря значительному повышению температуры при сильном сжатии паров хладагента (фреона), после чего производится сброс давления и испарение.

При этом температура фреона сильно падает, и перед повторным циклом сжатия ее надо поднимать до рабочего значения.

Это происходит при помощи теплообмена с водой, циркулирующей под землей на глубине 30-50 см ниже уровня промерзания почвы. Устройство для такого получения тепловой энергии называется коллектором и представляет собой довольно обширный котлован глубиной 1,5-2 метра, в котором уложен трубопровод с теплоносителем и засыпан слоем грунта.

Другой вариант — вода циркулирует в скважине глубиной около 50-70 м, куда опущена петля из полиэтиленового трубопровода. Всего существует три типа подземных теплообменников:

  • вертикальный зонд (петля из трубы)
  • энергетическая свая (техническое сооружение или устройство, использующее способ зонда, но более эффективное и получающее большую тепловую мощность)
  • плоский коллектор

Все способы получения тепловой энергии грунта имеют свои достоинства и недостатки, о чем будет сказано позже.

Тепловой насос — это два теплообменника, работающие в параллельном режиме, соединенные между собой компрессором, повышающим давление на входе в конденсатор (теплообменник №1) и дросселем, сбрасывающим давление на входе в испаритель (теплообменник №2).

Конструктивно это два отделения, каждое из которых обеспечивает половинный цикл Карно.

Фреон, циркулирующий в системе по замкнутому циклу, отдает тепловую энергию в систему отопления и ГВС дома, восполняя ее теплом, отобранным от грунта теплоносителем из скважины или коллектора.

Оба отделения могут располагаться в одном корпусе, или быть установлены на расстоянии друг от друга, главное условие — стабильность работы и отсутствие потерь при следовании хладагента из одного теплообменника в другой.

Достоинства и недостатки

Достоинства систем «грунт-вода»:

  • стабильная и не зависящая ни от каких факторов температура источника тепловой энергии, обеспечивающая высокую эффективность комплекса
  • возможность использования систем в сложных климатических условиях, регионах с низкими зимними температурами
  • надежность и устойчивость работы системы
  • высокая долговечность грунтового теплообменника
  • универсальность работы системы — помимо отопления возможна организация ГВС дома

Существуют и недостатки:

  • высокая стоимость оборудования, большие трудозатраты на создание коллекторов или бурение скважин. В сочетании с общей дороговизной оборудования, такая система потребует финансовых вложений в 4-5 раз превышающих расходы на теплонасосы воздушного типа
  • большие объемы земляных работ, требующих либо больших площадей, либо бурения глубоких скважин. В обоих случаях вопрос упирается в административные проблемы, необходимость получения разрешений на использование земли и т.д.

Еще одна проблема — вымораживание участка земли, используемого под коллектор. Холодный фреон существенно охлаждает грунт, нарушая естественный температурный режим, что отрицательно сказывается на растениях. Вопрос решается погружением трубопроводов на большую глубину, но это автоматически увеличивает расходы.

Сложности с получением разрешений и большие трудозатраты являются причинами отказа большинства пользователей от идеи установить теплонасос «грунт-вода», хотя при наличии возможностей распространение этого типа ТН было бы гораздо шире.

Расчет мощности установки

Произвести полноценный расчет установки для неопытного человека, не имеющего специального образования — непосильная задача.

Даже профессионалы испытывают немалые затруднения при выполнении расчетов, так как в процессе принимают участие многие факторы, которые необходимо учесть.

Поэтому для предварительной оценки параметров теплового насоса надо либо обращаться к специалистам, что очень дорого (и надо их еще отыскать), либо использовать онлайн-калькулятор, способный заменить профессионалов совершенно бесплатно.

Можно также обойтись простыми прикидками.

Например, для подсчета площади, необходимой под коллектор, надо отапливаемую площадь умножить на 2 (для дома в 100 м2 площадь коллектора составит 100 × 2 = 200 м2).

Подсчитать примерную мощность теплового насоса можно, принимая 0,7 кВт на каждые 10 м2 площади (для дома площадью 100 м2 потребуется система мощностью 7 кВт).

По этим параметрам можно выбирать подходящее оборудование.

Топ-5 лучших насосов

Приобретение готового комплекта — дорогостоящее мероприятие. Стоимость теплового насоса относительно невысокой мощности начинается от 8000 долларов, а для крупных систем, сочетающих обогрев и ГВС, цена поднимется гораздо выше.

Подбор конкретной модели производится исходя из потребностей дома и возможностей владельца, поэтому рекомендовать какое-либо устройство нет смысла. Однако, обладая информацией о наиболее известных производителях, можно определиться в своих предпочтениях и ограничить выбор самыми лучшими фирмами.

Рассмотрим их подробнее:

FHP (США)

Надежное и экономичное оборудование от лидера среди производителей тепловых насосов.

MECMASTER ENERGI AB (Швеция)

Компания, создающая тепловое оборудование с 60-х годов прошлого века и имеющая собственные традиции, разработки и изобретения в этой сфере.

Avenir Energie (Франция)

Фирма, лидирующая среди подобных компаний и создающая широкий модельный ряд тепловых насосов.

Steinmann (Швейцария)

Традиционное европейское качество, полная сертификация всего оборудования и методик обогрева.

Viessmann (ЕС, Китай) 

Компания, делающая серьезные заявки на лидерство среди основных производителей тепловых насосов.

Перечисленные производители являются самыми заметными среди большого количества продавцов теплонасосов, полный перечень изготовителей подобного оборудования привести попросту невозможно.

Стоимость установки

Монтаж системы обойдется в сумму, начинающуюся от 2000 долларов.

Этот предел подтверждают все специалисты, причем, все варианты упираются в состав и качество грунта, наличие монолитных горных пород или водоносных горизонтов. Чем выше сложность земляных работ, тем больше придется заплатить за создание отопительной системы, поэтому большинство пользователей пытается решать вопрос самостоятельно, по мере своих возможностей.

Как сделать тепловой насос «грунт-вода» своими руками

Цены на готовое оборудование таковы, что для большинства пользователей приобретение попросту недоступно. Пойти на такие расходы может только очень обеспеченный человек, но решением вопроса вполне может стать самостоятельное изготовление теплонасоса.

В этом случае расходы упадут почти до нуля, но придется изрядно повозиться и побегать по инстанциям, чтобы получить разрешение на производство земляных работ. Если все вопросы административного порядка не являются проблемой, можно приступать к работам.

Бурение скважины

Создание коллектора или бурение скважины являются операциями, которые крайне сложно выполнить своими руками. Для этих работ приглашают специалистов с необходимой техникой.

Все действия выполняются согласно заранее рассчитанным параметрам, в готовую скважину или коллектор погружается трубопровод, производятся все остальные действия. В результате должны остаться лишь два конца трубы, выходящие из земли или скважины.

Впоследствии они будут присоединены к испарителю теплового насоса. После этого приступают к созданию контура с хладагентом.

Расчеты и сделать рабочие чертежи

Прежде всего, необходимо произвести расчеты и сделать рабочие чертежи. Предстоит большой объем работ, выполнять их наугад нецелесообразно. Создание проекта поможет тщательно продумать все рабочие моменты, позволит вовремя обнаружить ошибки и просчеты.

Купить оборудование

Вторым шагом станет приобретение всех элементов системы, которые изготовить самостоятельно нельзя. К ним можно отнести компрессор, блоки управления, насосы и прочие узлы системы.

Сборка теплонасоса

После этого приступают к непосредственному созданию теплонасоса. Для изготовления конденсатора потребуется бак из нержавейки объемом около 120 л.

Бак разрезается в продольном направлении, впоследствии половинки надо будет сварить между собой, поэтому резать надо максимально аккуратно.

Внутрь этого бака надо установить змеевик из медной трубки таким образом, чтобы жидкость, проходящая по ней, не могла смешиваться с содержимым бака.

Для изготовления змеевика трубку наматывают на отрезок трубы или иной предмет круглого сечения с подходящим диаметром. В верхней и нижней частях бака делаются по 2 отверстия для входа и выхода змеевика и теплоносителя из системы отопления дома.

Испаритель делается подобным образом, только объем бака надо брать меньше — около 80 л. Иногда вместо металлического бака используют пластиковые емкости, чтобы снизить образование конденсата на стенках.

Подключение компрессора

Для установки и подключения компрессора рекомендуется обратиться к специалисту по холодильным установкам. При создании фреонового контура надо учитывать разные мелочи и нюансы, которые известны только опытным мастерам.

Самостоятельное выполнение пайки контура грозит появлением неточностей и ошибок, которые впоследствии обязательно дадут о себе знать.

Кроме того, понадобится закачать в систему фреон, что также следует поручить опытному специалисту.

Система трубопроводов

Собранный контур присоединяется к системе трубопроводов со стороны испарителя и к системе отопления дома со стороны конденсатора. Эти работы довольно просты и доступны для самостоятельного выполнения.

Подключается блок управления системой, после чего собранный тепловой насос запускается, проверяется на работоспособность, при необходимости производится исправление ошибок и устранение всех обнаруженных изъянов.

Если никаких нареканий не имеется, то эксплуатация оборудования продолжается в рабочем режиме.

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.