Для чего нужен гидравлический расчет

Содержание

Гидравлический расчет системы отопления: таблица с примерами

Для чего нужен гидравлический расчет

Доброго всем времени суток! Сегодня я опишу как нужно делать гидравлический расчет системы отопления и что это вообще такое. Начнем с последнего вопроса.

Что такое гидравлический расчет и для чего он нужен?

Гидравлический расчет системы отопления это математический алгоритм, в результате выполнения которого мы получим необходимый диаметр труб в данной системе (имеется ввиду внутренний диаметр).

Кроме того, будет понятно какой нам необходимо использовать циркуляционный насос — определяется напор и расход насоса.

Все это даст возможность сделать систему отопления экономически оптимальной.

Производится он на основании законов гидравлики — специального раздела физики, посвященного движению и равновесию в жидкостях.

Теория гидравлического расчета системы отопления

Теория гидравлики

Теоретически ГР отопления основан на следующем уравнении:

Данное равенство справедливо для конкретного участка.

Расшифровывается это уравнение следующим образом:

Из формулы видно, что потери давления тем больше, чем она длиннее и чем больше в ней отводов или других элементов, уменьшающих проход или меняющих направление потока жидкости.

Давайте выведем чему равны R и z. Для этого рассмотрим еще одно уравнение, показывающее потери давления от трения об стенки труб:

Это уравнение Дарси — Вейсбаха. Давайте расшифруем его:

  • λ — коэффициент, зависящий от характера движения трубы.
  • d — внутренний диаметр трубы.
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из этого уравнения устанавливается важная зависимость — потери давления на трение тем меньше, чем больше внутренний диаметр труб и меньше скорость движения жидкости.

Причем, зависимость от скорости здесь квадратичная. Потери в отводах, тройниках и запорной арматуре определяются по другой формуле:

Здесь:

  • ξ — коэффициент местного сопротивления (далее КМС).
  • v — скорость движения жидкости.
  • ρ — плотность жидкости.

Из данного уравнения также видно, что падение давления возрастает с увеличением скорости жидкости.

Также, стоит сказать, что в случае применения низкозамерзающего теплоносителя также будет играть важную роль его плотность — чем она выше тем тяжелее циркуляционному насосу.

Поэтому при переходе на «незамерзайку» возможно придется заменить циркуляционный насос.

Из всего вышеизложенного выведем следующее равенство:

ΔP =ΔPтрение +ΔPарматура=((λ/d)(v²ρ/2)) + (ξ(v²ρ/2)) = ((λ/α)l(v²ρ/2)) + (ξ*(v²ρ/2)) =  R•l + z;

Отсюда получаем следующие равенства для R и z:

  • R = (λ/α)*(v²ρ/2) Па/м;
  • z = ξ*(v²ρ/2) Па;

Теперь давайте разберемся в том, как используя эти формулы рассчитать гидравлическое сопротивление.

Гидравлический расчет системы отопления: пример расчета

Часто инженерам приходится рассчитывать системы отопления на больших объектах.

В них большое количество приборов отопления и много сотен метров труб, но считать все равно нужно.

Ведь без ГР не получится правильно подобрать циркуляционный насос.

К тому же ГР позволяет установить еще до монтажа будет ли работать все это.

Для упрощения жизни проектировщикам разработаны различные численные и программные методы определения гидравлического сопротивления. Начнем от ручного к автоматическому.

Приближенные формулы расчета гидравлического сопротивления

Для определения удельных потерь на трение в трубопроводе используется следующая приближенная формула:

R = 5104 v1.9 /d1,32   Па/м;

Здесь сохраняется практически квадратичная зависимость от скорости движения жидкости в трубопроводе.

Данная формула справедлива для скоростей 0,1-1,25 м/с.

Если у вас известен расход теплоносителя, то есть приближенная формула для определения внутреннего диаметра труб:

Получив результат необходимо воспользоваться следующей таблицей для получения диаметра условного прохода:

Наиболее трудоемким будет расчет местных сопротивлений в фитингах, запорной арматуре и приборах отопления.

Ранее я упоминал коэффициенты местного сопротивления ξ, их выбор делается по справочным таблицам.

Если с углами и запорной арматурой все ясно, то вот выбор КМС для тройников превращается в целое приключение.

Чтобы стало понятно о чем я говорю, посмотрим на следующую картинку:

По картинке видно, что у нас имеется целых 4 вида тройников, для каждого из которых будут свои КМС местного сопротивления.

Трудность тут будет состоять в правильном выборе направления тока теплоносителя.

Для тех кому очень нужно, приведу здесь таблицу с формулами из книги О.Д. Самарина «Гидравлические расчеты инженерных систем»:

Эти формулы можно перенести в MathCAD или любую другую программу и рассчитать КМС с погрешностью до 10 %.

Формулы применимы для скоростей движения теплоносителя от 0,1 до 1,25 м/с и для труб с диаметром условного прохода до 50 мм.

Такие формулы вполне подойдут для отопления коттеджей и частных домов. Теперь рассмотрим некоторые программные решения.

Программы для расчета гидравлического сопротивления в системах отопления

Сейчас в интернете можно найти много различных программ для расчета отопления платных и бесплатных.

Понятное дело, что платные программы обладают более мощным функционалом, чем бесплатные и позволяют решать более широкий круг задач.

Такие программы имеет смыл приобретать профессиональным инженерам-проектировщикам.

Обывателю, который хочет самостоятельно посчитать систему отопления в своем доме будет вполне достаточно бесплатных программ.

Ниже приведу список наиболее распространенных программных продуктов:

  • Valtec.PRG — бесплатная программа для расчета отопления и водоснабжения. Есть возможности расчета теплых полов и даже теплых стен
  • HERZ — целое семейство программ. С их помощью можно рассчитывать как однотрубные так и двухтрубные системы отопления. Программа имеет удобное графическое представление и возможность разбивки на поэтажные схемы. Имеется возможность расчета тепловых потерь
  • Поток — отечественная разработка, представляющая из себя комплексную САПР, которая может проектировать инженерные сети любой сложности. В отличии от предыдущих, Поток — платная программа. Поэтому простой обыватель вряд ли станет ей пользоваться. Она предназначена для профессионалов.

Есть еще несколько других решений. В основном от производителей труб и фитингов.

Производители затачивают программы для расчета под свои материалы и тем самым в какой-то степени вынуждают покупать их материалы. Это такой маркетинговый ход и в нем нет ничего плохого.

Итоги статьи

Расчет гидравлического сопротивления системы отопления дело прямо-таки не самое простое и требующее опыта.

Ошибки здесь могут стоить очень дорого. Отдельные ветки и стояки могут не работать. По ним просто не будет циркуляции.

По этой причине лучше чтобы этим занимались люди с образованием и опытом таких работ.

Сами монтажники практически никогда не занимаются расчетами.

Они везде стремятся делать одни и те же решения, которые работали у них ранее.

Но то, что работало у другого человека не обязательно будет работать у вас.

Гидравлический расчет газопровода, программы и примеры

Для чего нужен гидравлический расчет

Разберем подробнее гидравлический расчет газопровода и требования ТР, СП и ФНиП, связанные с проведением гидравлического расчета газопровода.

Попробуем:

  • поискать платные и бесплатные программы гидравлического расчета на просторах интернета и проанализировать их;
  • поискать форумы и сайты с уже сложившимся сообществом специалистов, связанных с газоснабжением;
  • поискать бесплатные программы полезные при проектировании и монтаже газопровода.

Строительство и монтаж газопроводов введется по документации разработанной в соответствии с действующим законодательством. В документации отражаются технические решения по прокладке газопроводов, в том числе диаметры участков газопровода, определенные в результате гидравлического расчета газопровода.

Для обеспечения безопасной и безотказной работы систем газоснабжения определение диаметров газопроводов необходимо ввести с учетом требований действующих технических регламентов (далее ТР), сводов правил (далее СП) и федеральных норм и правил в области промышленной безопасности «Правила безопасности сетей газораспределения и газопотребления» (далее ФНиП).

Что такое гидравлический расчет газопровода и зачем он нужен?

Гидравлический расчет — это расчет выполняемый по формулам прикладной науки «Гидравлика», о законах движения (см. гидродинамика капельных жидкостей и газов), равновесии жидкостей (см. гидростатика) и способах приложения этих законов к решению задач инженерной практики, с целью определения внутреннего диаметра газопровода исходя из исходных данных.

Что надо знать из гидравлики для проведения гидравлического расчета газопровода?

В процессе проведения гидравлического расчета определяются потери давления на расчетных участках газопроводов исходя из заданных условий: диаметра газопровода, расчетного расхода газа на участке, параметров транспортируемого газа (плотность, кинематическая вязкость). Целью расчета является обеспечение требуемого давления у газоиспользующего оборудования исходя из заданного давления в точке врезки и потерь давления на участках.

Потери давления в газопроводах состоят из двух основных частей:

  • потери на трение по всей протяжности газопровода (далее путевые потери);
  • потери давления на преодоление сопротивлений возникающих в результате изменения профиля трубы, в следствии поворотов газопровода, разветвления или соединения газопровода, изменения диаметров газопровода, установка арматуры и технических устройств, и т.д. (далее местные сопротивления).

Основными факторами от которого зависит сопротивления в газопроводах (при заданных диаметрах газопровода) являются:

  • материал труб (влияет на путевые потери);
  • расход газа и, соответственно, скорость газа (влияет на путевые и местные потери);
  • параметры газа (влияют на путевые и местные потери).

При этом в газопроводах (как и во всех трубопроводах) различают два вида течения: ламинарное и турбулентное. Режим течения определяется в процессе расчета (определяется числом Рейнольдса — Re) и в зависимости от него рассчитываются путевые потери.

Зависимость путевых потерь от скорости (расход газа) определяется по ряду формул и по сравнению с местными сопротивлениями гораздо ниже (чем протяжение газопроводов, тем больше влияние скорости на путевые потери). Местные сопротивления связаны с скоростью газа в трубе квадратичной зависимостью (при увеличении скорости газа в трубе в 3 раза, потери давления на местных сопротивлениях увеличиваются в 9 раз).

Какие данные необходимы (исходные данные) для выполнения гидравлического расчета газопровода?

Основными исходными данными для выбора методики расчета и его выполнения служат:

  • давление газа в точке врезки;
  • данные о потребителях (количество потребителей, месторасположения, номинальный расход газа и номинальное давление газа работы газоиспользующего оборудования).
  • схема газопровода (тупиковая, кольцевая, смешанная);

Различают три основных схемы газоснабжения:

  • тупиковая;
  • кольцевая;
  • смешанная.

Исходные данные: схемы газоснабжения

У каждой схемы газоснабжения есть как плюсы, так и минусы. Разберем их подробнее.

Тупиковая схема газоснабжения

Тупиковые схемы газоснабжения представляют собой газопровод, разветвляющийся по различным направлениям к потребителям газа. По мере удаления от источника газоснабжения или ПРГ давление газа в тупиковых сетях падает (вследствие сопротивления, об этом ниже).

Недостатками данной схемы газоснабжения являются более низкая надежность, по сравнению с закольцованными сетями, а также значительные затруднения при авариях и восстановительных работах на участках газопровода.

При аварии на любом участке газопровода прекращается подача газа ко всем потребителям, размещенным после аварийного участка.

При этом для тупиковых схем газоснабжения требуется меньше капитальных вложений, чем для кольцевых схем.

Кольцевая схема газоснабжения

Кольцевые схемы представляют собой систему замкнутых газопроводов с отводами к потребителям газа.

Благодаря этому достигается более стабильный режим давления газа у всех потребителей и существенно упрощаются эксплуатационные и ремонтные работы. Кольцевые сети наиболее надежны, но менее экономичны. Положительным свойством кольцевых сетей является также и то, что при выходе из строя какого-либо ПРГ нагрузку по снабжению потребителей газом принимают на себя другие пункты.

Смешанные схемы газоснабжения

Смешанные схемы газоснабжения включают в себя элементы, как тупиковых, так и кольцевых схем. Степень принятия той или иной схемы зависит от решения задачи по обеспечению требуемой надежности газоснабжения при заданных капитальных затратах.

После выбора схемы газоснабжения ее разбивают на расчетные участки исходя из следующих принципов:

  • новый расчетный участок начинается при смене диаметра газопровода;
  • новый расчетный участок начинается в узлах соединения или разъединения газопроводов;
  • новый расчетный участок газопровода начинается при изменении расчетного расхода газа.

Исходные данные: давление газа в точке врезки (в точках врезок)

Давление газа в точке врезки задаются в технических условиях (далее ТУ) на врезку в существующие системы газоснабжения. В технических условиях указываются данные о существующем газопроводе, в том числе: максимальное, рабочее и минимальное давление газа в точке врезки.

ТУ выдают организации эксплуатирующие газопровод в который предусматривается врезка. Так для систем газораспределения населенных пунктов это будут газораспределительные организации, а на производственных предприятиях службы эксплуатирующие газопроводы (газовая служба, отдел главного энергетика и т.д.).

Исходные данные: данные о потребителях

На этой стадии необходимо определить места установки оборудования и его количество. Номинальный расход газа и номинальное давления газа зависит от характеристик используемого газоиспользующего оборудования и определяются согласно паспортным данным (возможны варианты когда расход определяется согласно технологическому/теплотехническому расчету).

Что еще надо знать о газопроводах для проведения гидравлического расчета газопровода?

Согласно ТР «Технический регламент о безопасности сетей газораспределения и газопотребления» газопроводы классифицируют по давлению газа:

  • газопроводы высокого давления Iа категории (давление газа свыше 1,2 МПа);
  • газопроводы высокого давления I категории (давление газа в газопроводе от 0,6 МПа до 1,2 МПа);
  • газопроводы высокого давления II категории (давление газа в газопроводе от 0,3 МПа до 0,6 МПа);
  • газопроводы среднего давления категории (давление газа в газопроводе от 0,005 МПа до 0,3 МПа);
  • газопроводы низкого давления (давление газа в газопроводе до 0,005 МПа).

Подробнее о классификации газопроводов в отдельной теме «Классификация газопроводов по давлению».

Согласно тому же ТР «Технический регламент о безопасности сетей газораспределения и газопотребления» разделяет системы газоснабжения на:

  • сети газораспределения (осуществляется газоснабжения многочисленных потребителей не связанных между собой);
  • сети газопотребления (осуществляется газоснабжение потребителей, расположенных в рамках одной площадки, чаще всего производственной).

По расположению газопроводов различают:

  • наружные или внутренние;
  • наружные газопроводы: надземные, наземные или подземные;
  • внутренние газопроводы: проложенные открыто или закрыто;

По действующим нормам для монтажа газопроводов допускается использования:

  • стальных труб;
  • полиэтиленовых труб;
  • медных труб.

При этом надо знать, что:

  • стальные газопроводы допускается использовать во всех случаях;
  • полиэтиленовые газопроводы используются для прокладки наружных подземных газопроводов;
  • медные газопроводы используются только для внутренних газопроводов.

Выбор стальных труб можно произвести по СП 42-102-2004 «Проектирование и строительство газопроводов из металлических труб». Полиэтиленовый труб могут изготовляться по ГОСТ Р 50838 и ГОСТ Р 52779 соответственно или по техническим условиям из композиций полиэтилена, отвечающих требованиям этих стандартов.  Медные трубы изготовляются в соответствии с ГОСТ Р 52318.

Выбор диаметров газопровода на стадии гидравлического расчета происходит по сортаменту выбранной трубы или из типового ряда условных диаметров.

Данные из сортамента труб можно получить онлайн на сайте в программе «СОРТАМЕНТ ТРУБ КРУГЛОГО СЕЧЕНИЯ (СТАЛЬНЫХ, ПОЛИЭТИЛЕНОВЫХ И Т.Д.). КАЛЬКУЛЯТОР ТРУБ ОНЛАЙН».

Данные из сортамента ГОСТ Р 50838-2009 ГОСТ 8731-74 ГОСТ 3262-75

Пропускная способность сетей газораспределения и газопотребления должна определяться из условия газоснабжения всех потребителей в часы максимального потребления (максимальный часовой расход газа).

Это основные моменты которые понадобятся для выполнения гидравлического расчета газопровода. При этом многие вещи не затронуты в связи с их большим объемом, поэтому для тех кто хочет погрузится в тему глубже рекомендуется ознакомится со следующими документами:

Методика расчета потерь давления на расчетных участках

Методика расчета гидравлического расчета газопроводов и выбора диаметров газопроводов подробно изложены в теме «Гидравлический расчет газопроводов(методика СП 42-101-2003)».

Хотелось бы акцентировать внимание только на нескольких нюансах:

  • для расчета потерь давления на участках используется максимальный часовой расход газа;
  • в приложении Б СП 42-101-2003 присутствуют номограммы по которым можно определить удельные путевые потери газа на участке не расчетным методом (потери на местные сопротивления необходимо учитывать отдельно);
  • рекомендуется использовать расчетные методы получения потерь давления на расчетных участках для повышения точности расчетов;
  • расчет кольцевой схемы газоснабжения имеет свои нюансы и будут рассмотрены позже (определение расчетных расходов газа, увязка участков и т.д.).

Форумы и сайты с сложившимся сообществом специалистов, связанных с газоснабжением

Спецификой обоих ресурсов является то, что большую часть сообщества сложилось из специалистов, связанных с проектированием.

Программы гидравлического расчета газопроводов, виды и примеры расчетов

Программы которые могут пригодится при гидравлическом расчете газопроводов можно разделит на несколько типов:

  • профессиональные программы гидравлического расчета предназначенные для использования на персональных компьютерах;
  • бесплатные программы (различной степени сложности) гидравлического расчета газопроводов предназначенные для использования на персональных компьютерах;
  • бесплатные онлайн программы (различной степени сложности) гидравлического расчета газопроводов.

Рассмотрим каждый тип подробнее.

Профессиональные программы гидравлического расчета предназначенные для использования на персональных компьютерах

Под профессиональными программами понимаются программы за которые создатели берут деньги и несут ответственность за правильность расчета и методики в силу договора или лицензионного соглашения.

Для чего нужен гидравлический расчет

Для чего нужен гидравлический расчет

Гидравлический расчет (далее ГР) — это математический алгоритм, в результате выполнения которого мы получим необходимый диаметр труб в данной системе (имеется ввиду внутренний диаметр).

Кроме того, будет понятно какой нам необходимо использовать циркуляционный насос — определяется напор и расход насоса. Все это даст возможность сделать систему отопления экономически оптимальной.

Производится он на основании законов гидравлики — специального раздела физики, посвященного движению и равновесию в жидкостях.

Как на практике считают гидравлическое сопротивление системы отопления

Часто инженерам приходится рассчитывать системы отопления на больших объектах. В них большое количество приборов отопления и много сотен метров труб, но считать все равно нужно. Ведь без ГР не получится правильно подобрать циркуляционный насос. К тому же ГР позволяет установить еще до монтажа будет ли работать все это.

Для упрощения жизни проектировщикам разработаны различные численные и программные методы определения гидравлического сопротивления. Начнем от ручного к автоматическому.

Для определения удельных потерь на трение в трубопроводе используется следующая приближенная формула:

R = 5104 v1.9 /d1,32   Па/м;

Здесь сохраняется практически квадратичная зависимость от скорости движения жидкости в трубопроводе. Данная формула справедлива для скоростей 0,1-1,25 м/с.

Если у вас известен расход теплоносителя, то есть приближенная формула для определения внутреннего диаметра труб:

d = 0.75√G  мм;

Получив результат необходимо воспользоваться следующей таблицей для получения диаметра условного прохода:

Наиболее трудоемким будет расчет местных сопротивлений в фитингах, запорной арматуре и приборах отопления. Ранее я упоминал коэффициенты местного сопротивления ξ, их выбор делается по справочным таблицам. Если с углами и запорной арматурой все ясно, то вот выбор КМС для тройников превращается в целое приключение. Чтобы стало понятно о чем я говорю, посмотрим на следующую картинку:

По картинке видно, что у нас имеется целых 4 вида тройников, для каждого из которых будут свои КМС местного сопротивления. Трудность тут будет состоять в правильном выборе направления тока теплоносителя. Для тех кому очень нужно, приведу здесь таблицу с формулами из книги О.Д. Самарина «Гидравлические расчеты инженерных систем»:

Эти формулы можно перенести в MathCAD или любую другую программу и рассчитать КМС с погрешностью до 10 %. Формулы применимы для скоростей движения теплоносителя от 0,1 до 1,25 м/с и для труб с диаметром условного прохода до 50 мм. Такие формулы вполне подойдут для отопления коттеджей и частных домов. Теперь рассмотрим некоторые программные решения.

 Итоги статьи

Гидравлический расчет системы отопления: главные цели и задачи выполнения данного действия

Для чего нужен гидравлический расчет

Эффективность отопительной системы вовсе не гарантируют качественные трубы и высокопроизводительный теплогенератор.

Наличие ошибок, допущенных при монтаже, может свести на нет работу котла, работающего на полную мощность: либо в помещениях будет холодно, либо затраты на энергоносители будут неоправданно высокими.

Поэтому важно начинать с разработки проекта, одним из важнейших разделов которого является гидравлический расчет системы отопления.

Теплоноситель циркулирует по системе под давлением, которое не является постоянной величиной. Оно снижается из-за наличия сил трения воды о стенки труб, сопротивления на трубной арматуре и фитингах. Домовладелец также вносит свою лепту, корректируя распределение тепла по отдельным помещениям.

Давление растет, если температура нагрева теплоносителя повышается и наоборот – падает при ее снижении.

Чтобы избежать разбалансировки отопительной системы, необходимо создать условия, при которых к каждому радиатору поступает столько теплоносителя, сколько необходимо для поддержания заданной температуры и восполнения неизбежных теплопотерь.

Главной целью гидравлического расчета является приведение в соответствие расчетных расходов по сети с фактическими или эксплуатационными.

На данном этапе проектирования определяются:

  • диаметр труб и их пропускная способность;
  • местные потери давления по отдельным участкам системы отопления;
  • требования гидравлической увязки;
  • потери давления по всей системе (общие);
  • оптимальный расход теплоносителя.

Для производства гидравлического расчета необходимо проделать некую подготовку:

  1. Собрать исходные данные и систематизировать их.
  2. Выбрать методику расчета.

Первым делом проектировщик изучает теплотехнические параметры объекта и выполняет теплотехнический расчет. В итоге у него появляется информация о количестве тепла, необходимом для каждого помещения. После этого выбираются отопительные приборы и источник тепла.

Схематичное изображение отопительной системы в частном доме

На стадии разработки принимается решение о типе отопительной системы и особенностях ее балансировки, подбираются трубы и арматура. По окончании составляется аксонометрическая схема разводки, разрабатываются планы помещений с указанием:

  • мощности радиаторов;
  • расхода теплоносителя;
  • расстановки теплового оборудования и пр.

Все участки системы, узловые точки маркируются, подсчитывается и наносится на чертеж длина колец.

Расчет диаметра труб

Расчет сечения труб должен опираться на результаты теплового расчета, обоснованные экономически:

  • для двухтрубной системы – разность между tr (горячим теплоносителем) и to (охлажденным – обраткой);
  • для однотрубной – расход теплоносителя G, кг/ч.

Кроме того, в расчете должна учитываться скорость движения рабочей жидкости (теплоносителя) – V . Ее оптимальная величина находится в диапазоне 0,3-0,7 м/с. Скорость обратно пропорциональна внутреннему диаметру трубы.

При скорости движения воды, равной 0,6 м/с в системе появляется характерный шум, если же она менее 0,2 м/с, появляется риск возникновения воздушных пробок.

Для расчетов потребуется еще одна скоростная характеристика – скорость теплопотока. Она обозначается буквой Q, измеряется в ваттах и выражается в количестве тепла, переданного в единицу времени

Q (Вт) = W (Дж)/t (с)

Кроме вышеперечисленных исходных данных для расчета потребуются параметры отопительной системы – длина каждого участка с указанием приборов, подключенных к нему. Эти данные для удобства можно свести в таблицу, пример которой приведен ниже.

Таблица параметров участков

Обозначение участкаДлина участка в метрахКоличество приборов а участке, шт.
1-21,81
2-33,01
3-42,82
4-52,92

Расчет диаметров труб достаточно сложный, поэтому проще воспользоваться справочными таблицами. Их можно найти на сайтах производителей труб, в СНиП или специальной литературе.

Монтажники при подборе диаметра труб пользуются правилом, выведенным на основании анализа большого числа отопительных систем. Правда, это касается только небольших частных домов и квартир.

Практически все отопительные котлы оборудованы патрубками подачи и обратки ¾ и ½ дюйма. Такой трубой и выполняется разводка до первого разветвления.

Далее на каждом участке размер трубы уменьшают на один шаг.

Такой подход не оправдывает себя, если в доме имеется два или более этажей. В этом случае приходится производит полноценный расчет и обращаться к таблицам.

Вычисление местных сопротивлений

Местные сопротивления возникают в трубе и арматуре. На величину данных показателей влияют:

  • шероховатость внутренней поверхности трубы;
  • наличие мест расширения или сужения внутреннего диаметра трубопровода;
  • повороты;
  • протяженность;
  • наличие тройников, шаровых кранов, приборов балансировки и их количество.

Сопротивление рассчитывается для каждого участка, который характеризуется постоянным диаметром и неизменным расходом теплоносителя (в соответствии с тепловым балансом помещения).

Исходные данные для расчета:

  • длина расчетного участка – l, м;
  • диаметр трубы – d, мм;
  • заданная скорость теплоносителя – u, мм;
  • характеристики регулирующей арматуры, предоставляемые производителем;
  • коэффициент трения (зависит от материала трубы), λ;
  • потери на трение – ∆Pl, Па;
  • плотность теплоносителя (расчетная) – ρ = 971,8 кг/м3;
  • толщина стенки трубы – dн х δ, мм;
  • эквивалентная шероховатость трубы – kэ, мм.

Гидравлическое сопротивление – ∆P на участке сети рассчитывается по формуле Дарси-Вейсбаха.

Символ ξ в формуле означает коэффициент местного сопротивления.

Гидравлическая увязка

Балансировка перепадов давления в отопительной системе выполняется посредством регулирующей и запорной арматуры.

Гидравлическая увязка системы производится на основании:

  • проектной нагрузки (массового расхода теплоносителя);
  • данных производителей труб по динамическому сопротивлению;
  • количества местных сопротивлений на рассматриваемом участке;
  • технических характеристик арматуры.

Установочные характеристики – перепад давления, крепление, пропускная способность – задаются для каждого клапана. По ним определяют коэффициенты затекания теплоносителя в каждый стояк, а затем – в каждый прибор.

Потери давления прямо пропорциональны квадрату расхода теплоносителя и измеряются в кг/ч, где

S – произведение динамического удельного давления, выраженного в Па/(кг/ч), и приведенного коэффициента для местных сопротивлений участка (ξпр).

Приведенный коэффициент ξпр является суммой всех местных сопротивлений системы.

Определение потерь

Гидравлическое сопротивление главного циркуляционного кольца представляет собой сумму потерь его составляющих элементов:

  • первичного контура – ∆Plk;
  • местных систем – ∆Plм;
  • генератора тепла – ∆Pтг;
  • теплообменника ∆Pто.

Сумма всех этих величин и дает полное гидравлическое сопротивление системы ∆Pсо.

Гидравлический расчет системы отопления – пример расчета

В качестве примера рассмотрим двухтрубную гравитационную систему отопления.

Исходные данные для расчета:

  • расчетная тепловая нагрузка системы – Qзд. = 133 кВт;
  • параметры системы – tг = 750С, tо = 600С;
  • расход теплоносителя (расчетный) – Vсо = 7,6 м3/ч;
  • присоединение отопительной системы к котлам производится через гидравлический разделитель горизонтального типа;
  • автоматика каждого из котлов в течение всего года поддерживает постоянную температуру теплоносителя на выходе – tг = 800С;
  • автоматический регулятор перепада давления устанавливается на вводе каждого распределителя;
  • система отопления от распределителей смонтирована из металлопластиковых труб, а теплоснабжение распределителей производится посредством стальных труб (водогазопроводных).

Диаметры участков трубопроводов подобраны с использованием номограммы для заданной скорости теплоносителя 0,4-0,5 м/с.

На участке 1 установлен клапан dу 65. Его сопротивление согласно информации производителя составляет 800 Па.

На участке 1а установлен фильтр диаметром 65 мм и с пропускной способностью 55 м3/ч. Сопротивление этого элемента составит:

0,1 х (G/kv) х 2 = 0,1 х (7581/55) х 2 = 1900 Па.

Варианты двухтрубной отопительной системы

Сопротивление трехходового клапана dу = 40 мм и kv = 25 м3/ч составит 9200 Па.

Суммарные потери давления в системе снабжения теплом распределителей будут равняться 21514 Па или приблизительно 21,5 кПа.

Аналогичным образом производится расчет остальных частей системы теплоснабжения распределителей. При расчете системы отопления от распределителя выбирается основное циркуляционное кольцо через наиболее нагруженное отопительное устройство. Гидравлический расчет производится с использованием 1-го направления.

на тему

Самостоятельный гидравлический расчет трубопровода

Для чего нужен гидравлический расчет

Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя.

Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.

Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:

  • минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
  • круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
  • форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
  • процесс изготовления труб круглой формы относительно простой и доступный.

Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.

Основными параметрами, характеризующими трубопровод являются:

  • условный (номинальный) диаметр – DN;
  • давление номинальное – PN;
  • рабочее допустимое (избыточное) давление;
  • материал трубопровода, линейное расширение, тепловое линейное расширение;
  • физико-химические свойства рабочей среды;
  • комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
  • изоляционные материалы трубопровода.

Условный диаметр (проход) трубопровода (DN) – это условная  безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).

Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.

Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода.

Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.

Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.

Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.

Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.

Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.

Основные положения гидравлического расчета

Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.

Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний,  по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:

Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:

  • ламинарный поток (Re
Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.